[1]
WHO. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO); United Nations Children's Fund (UNICEF): Geneva, Switzerland, (2017).
Google Scholar
[2]
S. Chowdhury, P. Champagne, P.J. McLellan, Uncertainty characterization approaches for risk assessment of DBPs in drinking water: A review, J. Environ. Manag. 90 (2009) 1680–1691.
DOI: 10.1016/j.jenvman.2008.12.014
Google Scholar
[3]
L. Al-Issai, W. Elshorbagy, M.A. Maraqa, M. Hamouda, A.M. Soliman, Use of nanoparticles for the disinfection of desalinated water. Water. 11, 559 (2019) 1-20.
DOI: 10.3390/w11030559
Google Scholar
[4]
A. Hebert, D. Forestier, D. Lenes, D. Benanou, S. Jacob, C. Arfi, L. Lambolez, Y. Levi, Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res. 44 (2010) 3147–3165.
DOI: 10.1016/j.watres.2010.02.004
Google Scholar
[5]
F. Hossain, O. J. Perales-Perez, S. Hwang, F. Román, Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ. 2014, 466–467.
DOI: 10.1016/j.scitotenv.2013.08.009
Google Scholar
[6]
M. K. Ram, S. Andreescu, H. Ding, Nanotechnology for Environmental Decontamination; McGraw-Hill Professional: New York, NY, USA, 2011; ISBN 0-07-170279-2.
Google Scholar
[7]
Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360 (2011) 463–470.
DOI: 10.1016/j.jcis.2011.05.009
Google Scholar
[8]
P. Biswas, R. Bandyopadhyaya, Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration. Water Res. 100 (2016) 105–115.
DOI: 10.1016/j.watres.2016.04.048
Google Scholar
[9]
E. A. S. Dimapilis, C. S. Hsu, R.M.O. Mendoza, M. C. Lu, Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 28 (2018) 47–56.
DOI: 10.1016/j.serj.2017.10.001
Google Scholar
[10]
Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42 (2008) 4591–4602.
DOI: 10.1016/j.watres.2008.08.015
Google Scholar
[11]
S. Park, Y.-S Ko, H. Jung, C. Lee, K. Woo, G. Ko, Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci. Total Environ. 625 (2018) 477–485.
DOI: 10.1016/j.scitotenv.2017.12.318
Google Scholar
[12]
D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim, Y.G Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 266 (2013) 280–287.
DOI: 10.1016/j.apsusc.2012.11.168
Google Scholar
[13]
K.H.P. Reddy, V. Shashikala, N. Anand, C. Sandeep, B.D. Raju, K.S.R. Rao, A study on control of microorganisms in drinking water using Ag-Cu/C catalysts. Open Catal. J. 4 (2011) 47–53.
Google Scholar
[14]
D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim, Y.G. Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 266 (2013) 280–287.
DOI: 10.1016/j.apsusc.2012.11.168
Google Scholar
[15]
K. H. P. Reddy, V. Shashikala, N. Anand, C. Sandeep, B.D. Raju, K.S.R. Rao, A study on control of microorganisms in drinking water using Ag-Cu/C catalysts. Open Catal. J. 4 (2011) 47–53.
Google Scholar
[16]
C.S.S.R. Kumar, J. Hormes, C. Leuschner, Nanofabrication towards biomedical applications, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim (2005).
Google Scholar
[17]
O. C. Farokhzad, R. Langer, Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58 (2006) 1456–1459.
DOI: 10.1016/j.addr.2006.09.011
Google Scholar
[18]
S. D. Caruthers, S.A. Wickline, G.M. Lanza, Nano-technological applications in medicine. Curr. Opin. Biotechnol. 18(1) (2007) 26–30.
Google Scholar
[19]
S. K. Sahoo, S. Parveen, J.J. Panda The present and future of nanotechnology in human health care. Nanomedicine: nanotechnology. Biol. Med. 3(1) (2007) 20–31.
DOI: 10.1016/j.nano.2006.11.008
Google Scholar
[20]
V. K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface. Sci. 145(1–2) (2009) 83–96.
DOI: 10.1016/j.cis.2008.09.002
Google Scholar
[21]
G. J. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Bimetals, 11(1998) 27–32.
Google Scholar
[22]
S. Silver, L.T. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology and Biotechnology. 33 (2006) 627–634.
DOI: 10.1007/s10295-006-0139-7
Google Scholar
[23]
J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1) (2007) 95–101.
DOI: 10.1016/j.nano.2006.12.001
Google Scholar
[24]
R. W. Bennett and G. A. Lancette Bacteriological Analytical Manual, 8th ed. pp.201-220. In: Ronald G., Labbe G. and Garcia S. (2001). Guide to Food borne Pathogens, John Wiley and Sons, Inc. (2001). New York, NY.
Google Scholar
[25]
H. Wallace, T. Hammack, and A. Hammack, Bacteriological Analytical Manual, 8th ed., Revision A, Chapter 5. Food drug administration. (1998) USA.
Google Scholar
[26]
R. M. Atlas, L. C. Parks, and A. E. Brown, Laboratory Manual of Exp. Microbiol. Mosby- Yearbook, Baltimore (1995).
Google Scholar
[27]
W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen, Antibacterial activity and mechanism of silver nano particles on Escherichia coli. Appl Microbiol Biotechnol. 85 (2010) 1115-1122.
DOI: 10.1007/s00253-009-2159-5
Google Scholar
[28]
J. Vandepitte, and J. Verhaegen, Basic laboratory proceduresin clinical bacteriology, 2nded. World Health Organization (WHO). Singapore (2003).
Google Scholar
[29]
M.U.r. Rashid, M.d. K. H. Bhuiyan, M. E. Quayum, Synthesis of Silver Nano Particles (Ag-NPs) and their uses for Quantitative Analysis of Vitamin C Tablets. Dhaka Univ. J. Pharm, Sci. 12(1) (2013) 29-33.
DOI: 10.3329/dujps.v12i1.16297
Google Scholar
[30]
T. R. Marzoog, A. H. Younus, S. M. Naseer, The effect of antibiotics with citrus limon extract on local bacterial isolates. Journal of the Faculty of Basic Education, 21(89)(2015):61-72.
Google Scholar
[31]
E.J. Baron, S.M. Finegold. Diagnostic Microbiology. 8th Ed. Mosby Company .London (1990).
Google Scholar
[32]
T. Theivasanthi, M. Alagar, Anti-bacterial Studies of Silver Nanoparticles. Nanotechnology. 2(2011) 106-111.
Google Scholar
[33]
S. Pal, Y. K. Tak, J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle, A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(2007) 1712–1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[34]
W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, Y. H. Park Antibacterial Activity and Mechanism of Action of the Silver ion in Staphylococcus aureus and Escherichia coli. Applied and environmental microbiology. 74(7) (2008) 2171–2178.
DOI: 10.1128/aem.02001-07
Google Scholar
[35]
R. S. Jawaad, K. F. Sultan, A. H. Al- Hamadani. synthesis of silver nanoparticles. ARPN Journal of Engineering and Applied Sciences.9(4) (2014) 586-592.
Google Scholar
[36]
M. G., Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. International Journal of Chemical and Biological Engineering. 2(3) (2009) 104-111.
Google Scholar
[37]
R. H. Abass, A. M. Haleem, M. K. Hamid, A. Kadhim, R. S. Jawad. Antimicrobial Activity of TiO2 NPs against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. International Journal of Computation and Applied Sciences. 2(1)(2017)6-10.
DOI: 10.24842/1611/0017
Google Scholar
[38]
K. H. Choa, b. Jong-Eun Park, b. Tetsuya Osaka, Soo-Gil Park. The study of antimicrobial activity and preservative effects of nano silver ingredient. Electrochimica. Acta. 51(2005) 956–960.
DOI: 10.1016/j.electacta.2005.04.071
Google Scholar
[39]
S. Siddhartha, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver Nanoparticles. Nanotechnology. 18(22) (2007) 25-30.
DOI: 10.1088/0957-4484/18/22/225103
Google Scholar
[40]
R. Sachidanandham, K.Y. Gin, and C.L. Poh, Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnol. Bioeng. 89 (2005) 24–31.
DOI: 10.1002/bit.20304
Google Scholar
[41]
A. Younus, S. Al-Ahmer, M. Jabir, Evaluation of some immunological markers in children with bacterial meningitis caused by Streptococcus pneumoniae. Research Journal of Biotechnology, 14 (2019) 131-133.
Google Scholar