Disinfection of Drinking Water from Escherichia coli and Pseudomonas aeruginosa by Using Silver Nanoparticles

Article Preview

Abstract:

Due to the lack of raining levels, accretion population growth and increasing pollution in the water resources, the world nowadays is facing a real challenge of providing enough drinking water supplies. Many common species of bacteria could be founded in the water resources like Escherichia coli and Pseudomonas aeruginosa. This paper is an attempt to find an effective agent to eliminate these bacteria. silver nanoparticles (AgNPs) have been tested against these bacteria. Sliver nanoparticles were synthesized by wet chemistry method and were dispersed in an aqueous suspension and prepared in different concentrations. Also, some common antibiotics have been tested against the selected bacteria including; gentamycin (GN), cephalexin (KF), erythromycin (E), ampicillin (AM) and amoxicillin (AMX). The results confirmed that silver nanoparticles had a good antibacterial effect against the selected bacteria in comparison with the tested antibiotics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

478-488

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WHO. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO); United Nations Children's Fund (UNICEF): Geneva, Switzerland, (2017).

Google Scholar

[2] S. Chowdhury, P. Champagne, P.J. McLellan, Uncertainty characterization approaches for risk assessment of DBPs in drinking water: A review, J. Environ. Manag. 90 (2009) 1680–1691.

DOI: 10.1016/j.jenvman.2008.12.014

Google Scholar

[3] L. Al-Issai, W. Elshorbagy, M.A. Maraqa, M. Hamouda, A.M. Soliman, Use of nanoparticles for the disinfection of desalinated water. Water. 11, 559 (2019) 1-20.

DOI: 10.3390/w11030559

Google Scholar

[4] A. Hebert, D. Forestier, D. Lenes, D. Benanou, S. Jacob, C. Arfi, L. Lambolez, Y. Levi, Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res. 44 (2010) 3147–3165.

DOI: 10.1016/j.watres.2010.02.004

Google Scholar

[5] F. Hossain, O. J. Perales-Perez, S. Hwang, F. Román, Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ. 2014, 466–467.

DOI: 10.1016/j.scitotenv.2013.08.009

Google Scholar

[6] M. K. Ram, S. Andreescu, H. Ding, Nanotechnology for Environmental Decontamination; McGraw-Hill Professional: New York, NY, USA, 2011; ISBN 0-07-170279-2.

Google Scholar

[7] Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360 (2011) 463–470.

DOI: 10.1016/j.jcis.2011.05.009

Google Scholar

[8] P. Biswas, R. Bandyopadhyaya, Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration. Water Res. 100 (2016) 105–115.

DOI: 10.1016/j.watres.2016.04.048

Google Scholar

[9] E. A. S. Dimapilis, C. S. Hsu, R.M.O. Mendoza, M. C. Lu, Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 28 (2018) 47–56.

DOI: 10.1016/j.serj.2017.10.001

Google Scholar

[10] Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42 (2008) 4591–4602.

DOI: 10.1016/j.watres.2008.08.015

Google Scholar

[11] S. Park, Y.-S Ko, H. Jung, C. Lee, K. Woo, G. Ko, Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci. Total Environ. 625 (2018) 477–485.

DOI: 10.1016/j.scitotenv.2017.12.318

Google Scholar

[12] D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim, Y.G Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 266 (2013) 280–287.

DOI: 10.1016/j.apsusc.2012.11.168

Google Scholar

[13] K.H.P. Reddy, V. Shashikala, N. Anand, C. Sandeep, B.D. Raju, K.S.R. Rao, A study on control of microorganisms in drinking water using Ag-Cu/C catalysts. Open Catal. J. 4 (2011) 47–53.

Google Scholar

[14] D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim, Y.G. Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 266 (2013) 280–287.

DOI: 10.1016/j.apsusc.2012.11.168

Google Scholar

[15] K. H. P. Reddy, V. Shashikala, N. Anand, C. Sandeep, B.D. Raju, K.S.R. Rao, A study on control of microorganisms in drinking water using Ag-Cu/C catalysts. Open Catal. J. 4 (2011) 47–53.

Google Scholar

[16] C.S.S.R. Kumar, J. Hormes, C. Leuschner, Nanofabrication towards biomedical applications, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim (2005).

Google Scholar

[17] O. C. Farokhzad, R. Langer, Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58 (2006) 1456–1459.

DOI: 10.1016/j.addr.2006.09.011

Google Scholar

[18] S. D. Caruthers, S.A. Wickline, G.M. Lanza, Nano-technological applications in medicine. Curr. Opin. Biotechnol. 18(1) (2007) 26–30.

Google Scholar

[19] S. K. Sahoo, S. Parveen, J.J. Panda The present and future of nanotechnology in human health care. Nanomedicine: nanotechnology. Biol. Med. 3(1) (2007) 20–31.

DOI: 10.1016/j.nano.2006.11.008

Google Scholar

[20] V. K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface. Sci. 145(1–2) (2009) 83–96.

DOI: 10.1016/j.cis.2008.09.002

Google Scholar

[21] G. J. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Bimetals, 11(1998) 27–32.

Google Scholar

[22] S. Silver, L.T. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology and Biotechnology. 33 (2006) 627–634.

DOI: 10.1007/s10295-006-0139-7

Google Scholar

[23] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1) (2007) 95–101.

DOI: 10.1016/j.nano.2006.12.001

Google Scholar

[24] R. W. Bennett and G. A. Lancette Bacteriological Analytical Manual, 8th ed. pp.201-220. In: Ronald G., Labbe G. and Garcia S. (2001). Guide to Food borne Pathogens, John Wiley and Sons, Inc. (2001). New York, NY.

Google Scholar

[25] H. Wallace, T. Hammack, and A. Hammack, Bacteriological Analytical Manual, 8th ed., Revision A, Chapter 5. Food drug administration. (1998) USA.

Google Scholar

[26] R. M. Atlas, L. C. Parks, and A. E. Brown, Laboratory Manual of Exp. Microbiol. Mosby- Yearbook, Baltimore (1995).

Google Scholar

[27] W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen, Antibacterial activity and mechanism of silver nano particles on Escherichia coli. Appl Microbiol Biotechnol. 85 (2010) 1115-1122.

DOI: 10.1007/s00253-009-2159-5

Google Scholar

[28] J. Vandepitte, and J. Verhaegen, Basic laboratory proceduresin clinical bacteriology, 2nded. World Health Organization (WHO). Singapore (2003).

Google Scholar

[29] M.U.r. Rashid, M.d. K. H. Bhuiyan, M. E. Quayum, Synthesis of Silver Nano Particles (Ag-NPs) and their uses for Quantitative Analysis of Vitamin C Tablets. Dhaka Univ. J. Pharm, Sci. 12(1) (2013) 29-33.

DOI: 10.3329/dujps.v12i1.16297

Google Scholar

[30] T. R. Marzoog, A. H. Younus, S. M. Naseer, The effect of antibiotics with citrus limon extract on local bacterial isolates. Journal of the Faculty of Basic Education, 21(89)(2015):61-72.

Google Scholar

[31] E.J. Baron, S.M. Finegold. Diagnostic Microbiology. 8th Ed. Mosby Company .London (1990).

Google Scholar

[32] T. Theivasanthi, M. Alagar, Anti-bacterial Studies of Silver Nanoparticles. Nanotechnology. 2(2011) 106-111.

Google Scholar

[33] S. Pal, Y. K. Tak, J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle, A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(2007) 1712–1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[34] W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, Y. H. Park Antibacterial Activity and Mechanism of Action of the Silver ion in Staphylococcus aureus and Escherichia coli. Applied and environmental microbiology. 74(7) (2008) 2171–2178.

DOI: 10.1128/aem.02001-07

Google Scholar

[35] R. S. Jawaad, K. F. Sultan, A. H. Al- Hamadani. synthesis of silver nanoparticles. ARPN Journal of Engineering and Applied Sciences.9(4) (2014) 586-592.

Google Scholar

[36] M. G., Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. International Journal of Chemical and Biological Engineering. 2(3) (2009) 104-111.

Google Scholar

[37] R. H. Abass, A. M. Haleem, M. K. Hamid, A. Kadhim, R. S. Jawad. Antimicrobial Activity of TiO2 NPs against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. International Journal of Computation and Applied Sciences. 2(1)(2017)6-10.

DOI: 10.24842/1611/0017

Google Scholar

[38] K. H. Choa, b. Jong-Eun Park, b. Tetsuya Osaka, Soo-Gil Park. The study of antimicrobial activity and preservative effects of nano silver ingredient. Electrochimica. Acta. 51(2005) 956–960.

DOI: 10.1016/j.electacta.2005.04.071

Google Scholar

[39] S. Siddhartha, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver Nanoparticles. Nanotechnology. 18(22) (2007) 25-30.

DOI: 10.1088/0957-4484/18/22/225103

Google Scholar

[40] R. Sachidanandham, K.Y. Gin, and C.L. Poh, Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnol. Bioeng. 89 (2005) 24–31.

DOI: 10.1002/bit.20304

Google Scholar

[41] A. Younus, S. Al-Ahmer, M. Jabir, Evaluation of some immunological markers in children with bacterial meningitis caused by Streptococcus pneumoniae. Research Journal of Biotechnology, 14 (2019) 131-133.

Google Scholar