Residual Stress Distribution of Non-Uniform Quenching in Al-Zn-Mg-Cu Aluminum Alloy Thick Plate

Article Preview

Abstract:

Effect of multi-section linear non-uniform heat transfer coefficient on quenching residual stress distribution in 27mm-thick Al-Zn-Mg-Cu aluminum alloy plate was simulation studied by using the finite element method, and the surface quenching residual stress distribution was measured by the X-ray diffraction method and hole-drilling method. The results show that the surface quenching residual stress represents the same distribution with non-uniform heat transfer coefficient in the transverse direction and the stress level maintains initial stress level of the heat transfer coefficient at each location. The distribution of the quenching residual stress in the center of the plate is approximately uniform and the stress level is approximately equal to average of maximum and minimum initial stress level. The measured surface quenching residual stress shows a wavy distribution in the transverse direction, which is similar to the simulated surface stress distribution without considering the stress level. The measurement results can be explained by the multi-section linear non-uniform quenching model.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

11-19

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater Design. 56 (2004) 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[2] J. S. Robinson, R. L. Cudd, D. A. Tanner, G. P. Dolan, Quench sensitivity and tensile property inhomogeneity in 7010 forgings, J Mater Process Technol. 119 (2001) 261-267.

DOI: 10.1016/s0924-0136(01)00927-x

Google Scholar

[3] J. S. Robinson, D. A. Tanner, C. E. Trumen, 50th Anniversary Article: The Origin and Management of Residual Stress in Heat-treatable Aluminium Alloys, Strain.50 (2014) 185-207.

DOI: 10.1111/str.12091

Google Scholar

[4] D. A. Tanner, J. S. Robinson, Modelling stress reduction techniques of cold compression and stretching in wrought aluminum alloy products, Finite Elem Anal Design.39 (2003) 369-386.

DOI: 10.1016/s0168-874x(02)00079-3

Google Scholar

[5] W. F. Xu, J. H. Liu, H. Q. Zhu, Analysis of residual stresses in thick aluminum friction stir welded butt joints, Mater Design. 32 (2011) 2000-2005.

DOI: 10.1016/j.matdes.2010.11.062

Google Scholar

[6] J. S. Robinson, D. A. Tanner, C. E. Truman, A. M. Paradowska, R. C. Wimpory, The influence of quench sensitivity on residual stresses in the aluminum alloys 7010 and 7075, Mater Charact. 65 (2012) 73-85.

DOI: 10.1016/j.matchar.2012.01.005

Google Scholar

[7] A. V. Virkar, Determination of residual stress profile using a strain gage technique, J Am Ceram Soc. 73 (1990) 2100-2102.

DOI: 10.1111/j.1151-2916.1990.tb05276.x

Google Scholar

[8] M. B. Prime, M. R. Hill, Residual stress, stress relief, and inhomogeneity in aluminum plate, Scripta Mater. 46 (2000) 77-82.

DOI: 10.1016/s1359-6462(01)01201-5

Google Scholar

[9] M. B. Prime, Residual stress measurement by successive extension of a slot: The crack compliance method, Appl Mech Rev. 52 (1999) 75-96.

DOI: 10.1115/1.3098926

Google Scholar

[10] M. B. Prime, M. R. Hill, Uncertainty analysis, model error and order selection for series-expanded, residual-stress inverse solutions, J Mater Process Technol. 128 (2006) 175-185.

DOI: 10.1115/1.2172278

Google Scholar

[11] S. Pratihar, V. Stelmukh, M. T. Hutehings, U. Stuhr, L. Edwards, Measurement of the residual stress field in MIG-welded Al-2024 and Al-7150 aluminium alloy compact tension specimens, Mat Sci Eng A. 437 (2006) 46-53.

DOI: 10.1016/j.msea.2006.04.061

Google Scholar

[12] W. Woo, Z. Feng, X. L. Wang, C. R. Hubbard, Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation, Scripta Mater. 61 (2009) 624-627.

DOI: 10.1016/j.scriptamat.2009.05.040

Google Scholar

[13] M. B. Prime, T. Gnäupel-Herold, J. A. Baumann, R. J. Lederich, D. M. Bowden, R. J. Sebring, Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld, Acta Mater. 54 (2006) 4013-4021.

DOI: 10.1016/j.actamat.2006.04.034

Google Scholar

[14] S. Bikass, B. Andersson, A. Pilipenko, Simulation of distortion due to non-uniform cooling in aluminium extrusion process, Int J Mater Form. 3 (2010) 813-816.

DOI: 10.1007/s12289-010-0894-x

Google Scholar

[15] B. W. Xiao, Q. G. Wang, P. Jadhav, K. Y. Li, An experimental study of heat transfer in aluminum castings during water quenching, J Mater Process Technol. 210 (2010) 2023-2028.

DOI: 10.1016/j.jmatprotec.2010.07.026

Google Scholar

[16] R. C. Guo, J. J. Wu, H. Fan, X. P. Zhang, The effects of spray characteristic on heat transfer during spray quenching of aluminum alloy 2024, Exp Therm Fluid Sci. 76 (2016) 211-220.

DOI: 10.1016/j.expthermflusci.2016.03.025

Google Scholar

[17] L. Zhang, X. Feng, Z. G. Li, C. Y. Liu, FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024, P I Mech Eng B-J Eng. 227 (2013) 954-964.

DOI: 10.1177/0954405412465232

Google Scholar

[18] Y. B. Dong, W. Z. Shao, L. X. Lu, Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging, J Mater Eng Perform. 24 (2015) 4928-4940.

DOI: 10.1007/s11665-015-1758-9

Google Scholar

[19] J. Zhang, L. Zheng, X. B. Guo, V. Ji, V. Klosek, Residual Stresses Comparison Determined by Short-Wavelength X-Ray Diffraction and Neutron Diffraction for 7075 Aluminum Alloy, J Nondestruct Eval. 33 (2014) 82-92.

DOI: 10.1007/s10921-013-0205-9

Google Scholar