[1]
B.S. Altan, Severe Plastic Deformation: Towards Bulk Production of Nanostructured Materials, Nova Science Publishers Inc, New York, (2006).
Google Scholar
[2]
N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, M. Kiritani, Microstructural change of ultrafine-grained aluminum during high-speed plastic deformation, Mater. Sci. Eng. A. 350 (2003) 108-116.
DOI: 10.1016/s0921-5093(02)00709-8
Google Scholar
[3]
V.M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A. 197 (1995) 157-164.
Google Scholar
[4]
J.T. Wang, Historic retrospection and present status of severe plastic deformation in China, Mater. Sci. Forum. 503-504 (2006) 363-370.
DOI: 10.4028/www.scientific.net/msf.503-504.363
Google Scholar
[5]
T.G. Langdon, Processing by severe plastic deformation: Historical developments and current impact, Mater. Sci. Forum. 667-669 (2011) 9-14.
DOI: 10.4028/www.scientific.net/msf.667-669.9
Google Scholar
[6]
N.R. Tao, K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scr. Mater. 60 (2009) 1039-1043.
DOI: 10.1016/j.scriptamat.2009.02.008
Google Scholar
[7]
R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.
DOI: 10.1146/annurev-matsci-070909-104445
Google Scholar
[8]
J. Victoria-Hernández, J. Suh, S. Yi, J. Bohlen, W. Volk, D. Letzig, Strain-induced selective grain growth in AZ31 Mg alloy sheet deformed by equal channel angular pressing, Mater. Charact. 113 (2016) 98-107.
DOI: 10.1016/j.matchar.2016.01.002
Google Scholar
[9]
E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Nanostructured pure copper fabricated by simple shear extrusion (SSE): A correlation between microstructure and tensile properties, Mater. Sci. Eng. A. 679 (2017) 465-475.
DOI: 10.1016/j.msea.2016.10.068
Google Scholar
[10]
W. Presz, A. Rosochowski, The influence of grain size on surface quality of microformed components, Proceedings of the 9th International Conference on Material Forming: ESAFORM 2006. (2006) 587-590.
Google Scholar
[11]
L.C. Zhang, L.Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater. 21 (2019) 1-29.
Google Scholar
[12]
D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials. 29 (2008) 970-983.
DOI: 10.1016/j.biomaterials.2007.11.009
Google Scholar
[13]
R.Z. Valiev, I.V. Alexandrov, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002) 5-8.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[14]
M. Vilotic, N. Dacevic, M. Milutinovic, D. Movrin, Effect of Severe Plastic Deformation on Low Carbon Steel Workability, The 2nd Asian Pacific Symposium on Technology of Plasticity APSTP 2019. (2019) 1-14.
Google Scholar
[15]
R.Z. Valiev, The new trends in SPD processing to fabricate bulk nanostructured materials, Proceedings of the 9th International Conference on Material Forming: ESAFORM 2006. (2006) 1-9.
DOI: 10.4028/www.scientific.net/ssp.114.7
Google Scholar
[16]
A.R. Safiullin, R.V. Safiullin, A.A. Kruglov, Application of nanostructural Ti alloy for producing a face for a golf club, Rev. Adv. Mater. Sci. 25 (2010) 281-285.
Google Scholar
[17]
S. Ferrase, F. Alford, S. Grabmeier, A. Düvel, R. Zedlitz, S. Strothers, J. Evans, B. Daniels, Technology White Paper. (2003).
Google Scholar