Flow Stress Behavior of Al-3.5Cu-1.0Li-0.4Mg-0.6Zn-0.3Ag Alloy under Hot Tension

Article Preview

Abstract:

The hot deformation behavior and microstructure evolution of Al-3.5Cu-1.0Li-0.4Mg- 0.6Zn-0.3Ag aluminum lithium alloy were investigated by hot tensile tests on Gleeble-1500 thermal simulator at 480-510 °C and strain rates 0.0001-0.1 s-1. The results show that obvious flow steady-state phenomena occur during hot stretching and the main mechanism changes from dynamic recovery to dynamic recrystallization with the increase of temperature and decrease of strain rate. The constitutive equation was calculated using the true stress-strain curve obtained by the hyperbolic sinusoidal pair of deformation activation energy Q and temperature T proposed by Sellars and Tegart. The deformation heat activation energy is 226.783 KJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

20-25

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.J. Rioja, Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A 257 (1998) 100-107.

DOI: 10.1016/s0921-5093(98)00827-2

Google Scholar

[2] E. Starke Jr., J. Staley, Application of modern aluminum alloys to aircraft, Prog. Aerosp. Sci. 32 (1996) 131-172.

Google Scholar

[3] R. Rioja, C. Giummarra, S. Cheong, The role of crystallographic texture on the performance of flat rolled aluminum products for aerospace applications, in: Light Metals-warrandale -Proceedings, TMS, 2008, p.1065.

Google Scholar

[4] Z. Li, R. Mirshams, E. Kenik, P. Hartley, Effect of stretching prior to aging on mechanical properties in Al-Cu-Li (2195) alloy, Light Weight Alloys Aerosp. Appl. IV (1997) 117-127.

Google Scholar

[5] X. Huan, Cryogenic tank and application of aluminium-lithium alloy, Missiles Space Veh. 6 (2001) 008.

Google Scholar

[6] W. Tack, L. Loechel, Weldalite™ 049: applicability of a new high strength, weldable Al-Li-Cu alloy, aluminum-lithium alloys V, in: E.A. Starke, T.H. Sanders (Eds.), Materials and Component Engineering Publication, Birmingham, England, 1989, pp.1457-1467.

Google Scholar

[7] T. Warner, Recently-developed aluminium solutions for aerospace applications, Mater. Sci. Forum Trans. Tech. Publ. (2006) 1271-1278.

DOI: 10.4028/www.scientific.net/msf.519-521.1271

Google Scholar

[8] G.T. Kridli, A.S. El-Gizawy, R. Lederich, Development of process maps for superplastic forming of Weldalite™ 049, Mater. Sci. Eng. A 244 (1998) 224-232.

DOI: 10.1016/s0921-5093(97)00545-5

Google Scholar

[9] V. Jain, K. Jata, R. Rioja, J. Morgan, A. Hopkins, Processing of an experimental Aluminum lithium alloy for controlled microstructure, J. Mater. Process. Technol. 73 (1998) 108-118.

DOI: 10.1016/s0924-0136(97)00219-7

Google Scholar

[10] H. Yin, H. Li, X. Su, D. Huang, Processing maps and microstructural evolution of isothermal compressed AleCueLi alloy, Mater. Sci. Eng. A 586 (2013) 115-122.

DOI: 10.1016/j.msea.2013.07.084

Google Scholar

[11] G.J. Reddy, N. Srinivasan, A.A. Gokhale, B. Kashyap, Processing map for hot working of spray formed and hot isostatically pressed AleLi alloy (UL40), J. Mater. Process. Technol. 209 (2009) 5964e5972.

DOI: 10.1016/j.jmatprotec.2009.07.016

Google Scholar

[12] N. Nayan, S.V.S.N. Murty, A.K. Jha, B. Pant, S. Sharma, K.M. George, G. Sastry, Processing and characterization of Al-Cu-Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique, Mater. Sci. Eng. A 576 (2013) 21-28.

DOI: 10.1016/j.msea.2013.03.054

Google Scholar

[13] N. Nayan, S.V.S.N. Murty, S.C. Sharma, K. Sreekumar, P.P. Sinha, Optimization of homogenization parameters of Al-Cu-Li alloy cast ingots using calorimetry and metallographic techniques, Mater. Sci. Forum, Trans Tech Publ (2012) 557-562.

DOI: 10.4028/www.scientific.net/msf.710.557

Google Scholar

[14] S.V.S. Narayana Murty, B.Nageswara Rao, On the flow localization concepts in the processing maps of IN718, Mater. Sci. Eng. A 267 (1999) 159-161.

DOI: 10.1016/s0921-5093(99)00122-7

Google Scholar

[15] F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, (2004).

Google Scholar

[16] N. Gurao, R. Kapoor, S. Suwas, Deformation behaviour of commercially pure titanium at extreme strain rates, Acta Mater. 59 (2011) 3431-3446.

DOI: 10.1016/j.actamat.2011.02.018

Google Scholar