[1]
R.J. Rioja, Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A 257 (1998) 100-107.
DOI: 10.1016/s0921-5093(98)00827-2
Google Scholar
[2]
E. Starke Jr., J. Staley, Application of modern aluminum alloys to aircraft, Prog. Aerosp. Sci. 32 (1996) 131-172.
Google Scholar
[3]
R. Rioja, C. Giummarra, S. Cheong, The role of crystallographic texture on the performance of flat rolled aluminum products for aerospace applications, in: Light Metals-warrandale -Proceedings, TMS, 2008, p.1065.
Google Scholar
[4]
Z. Li, R. Mirshams, E. Kenik, P. Hartley, Effect of stretching prior to aging on mechanical properties in Al-Cu-Li (2195) alloy, Light Weight Alloys Aerosp. Appl. IV (1997) 117-127.
Google Scholar
[5]
X. Huan, Cryogenic tank and application of aluminium-lithium alloy, Missiles Space Veh. 6 (2001) 008.
Google Scholar
[6]
W. Tack, L. Loechel, Weldalite™ 049: applicability of a new high strength, weldable Al-Li-Cu alloy, aluminum-lithium alloys V, in: E.A. Starke, T.H. Sanders (Eds.), Materials and Component Engineering Publication, Birmingham, England, 1989, pp.1457-1467.
Google Scholar
[7]
T. Warner, Recently-developed aluminium solutions for aerospace applications, Mater. Sci. Forum Trans. Tech. Publ. (2006) 1271-1278.
DOI: 10.4028/www.scientific.net/msf.519-521.1271
Google Scholar
[8]
G.T. Kridli, A.S. El-Gizawy, R. Lederich, Development of process maps for superplastic forming of Weldalite™ 049, Mater. Sci. Eng. A 244 (1998) 224-232.
DOI: 10.1016/s0921-5093(97)00545-5
Google Scholar
[9]
V. Jain, K. Jata, R. Rioja, J. Morgan, A. Hopkins, Processing of an experimental Aluminum lithium alloy for controlled microstructure, J. Mater. Process. Technol. 73 (1998) 108-118.
DOI: 10.1016/s0924-0136(97)00219-7
Google Scholar
[10]
H. Yin, H. Li, X. Su, D. Huang, Processing maps and microstructural evolution of isothermal compressed AleCueLi alloy, Mater. Sci. Eng. A 586 (2013) 115-122.
DOI: 10.1016/j.msea.2013.07.084
Google Scholar
[11]
G.J. Reddy, N. Srinivasan, A.A. Gokhale, B. Kashyap, Processing map for hot working of spray formed and hot isostatically pressed AleLi alloy (UL40), J. Mater. Process. Technol. 209 (2009) 5964e5972.
DOI: 10.1016/j.jmatprotec.2009.07.016
Google Scholar
[12]
N. Nayan, S.V.S.N. Murty, A.K. Jha, B. Pant, S. Sharma, K.M. George, G. Sastry, Processing and characterization of Al-Cu-Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique, Mater. Sci. Eng. A 576 (2013) 21-28.
DOI: 10.1016/j.msea.2013.03.054
Google Scholar
[13]
N. Nayan, S.V.S.N. Murty, S.C. Sharma, K. Sreekumar, P.P. Sinha, Optimization of homogenization parameters of Al-Cu-Li alloy cast ingots using calorimetry and metallographic techniques, Mater. Sci. Forum, Trans Tech Publ (2012) 557-562.
DOI: 10.4028/www.scientific.net/msf.710.557
Google Scholar
[14]
S.V.S. Narayana Murty, B.Nageswara Rao, On the flow localization concepts in the processing maps of IN718, Mater. Sci. Eng. A 267 (1999) 159-161.
DOI: 10.1016/s0921-5093(99)00122-7
Google Scholar
[15]
F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, (2004).
Google Scholar
[16]
N. Gurao, R. Kapoor, S. Suwas, Deformation behaviour of commercially pure titanium at extreme strain rates, Acta Mater. 59 (2011) 3431-3446.
DOI: 10.1016/j.actamat.2011.02.018
Google Scholar