[1]
L. Wang, Y. Q. Zhao, H. M. Chen, etal. Improvement of mechanical properties of magnesium Alloy ZK60 by asymmetric reduction rolling, Acta Metall. Sinica, 1(2018) 63-70.
DOI: 10.1007/s40195-017-0649-5
Google Scholar
[2]
H. Lin, M. B. Yang, H. Tang, etal. Effect of minor Sc on the microstructure and mechanical properties of AZ91 magnesium alloy, Prog. Nat. Sci.: Mater. Int., 1(2018)66-73.
DOI: 10.1016/j.pnsc.2018.01.006
Google Scholar
[3]
D. D. Zhang, D.P. Zhang, F. Q. Bu, etal. Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5RE based alloy, Mater. Sci. Eng. A, 2(2017):51-59.
DOI: 10.1016/j.msea.2017.03.055
Google Scholar
[4]
G. Yu, X. J.Wang, Y. J. Ooyang , etal. An electroplating process of magnesium Alloy without chromium and with low fluorine, J. Hunan Univ.(Nat. Sci.), 2008, 35(9):65-69.
Google Scholar
[5]
L. P. Wu, J. J. Zhao ,Y. P. Xie, etal. Progress of electroplating and electroless plating on magnesium alloy, Trans. Nonferr. Met. Soc. China, s2(2010)s630-s639.
Google Scholar
[6]
Y. N. Gou, D. F. Zhang , D. Yi, etal. Effect of amino acid on the anodic oxidation of magnesium alloy and its mechanism, Rare Met. Mater. Eng., 4(2017)1103-1109.
Google Scholar
[7]
Y. P. Liu, T. T. Li, J. Li, etal. Growth dynamics process of anodic film formed on magnesium alloy[, Rare Met. Mater. Eng., 4(2014)1013-1018.
Google Scholar
[8]
K. H. Dong , Y. W. Song , D. Y. Dan , etal. Research progress of micro-arc oxidation technology on magnesium alloys, Surf. Technol., 3(2015)74-80.
Google Scholar
[9]
Y. B. Zhao , L. Q. Shi , L. Y. Cui, etal. Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys, Acta Metall. Sinica, 2(2018)180-188.
DOI: 10.1007/s40195-017-0601-8
Google Scholar
[10]
Z. U. Rehman, Y. S. Jeong, B. H. Koo . Effect of processing time on the microarc oxidation coatings produced on magnesium AZ61 alloy at constant hybrid voltage, Korean J. Mater. Res., 10(2015)509-515.
DOI: 10.3740/mrsk.2015.25.10.509
Google Scholar
[11]
Y. B. Zhao , L. Q. Shi, L. Y. Cui, etal. Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys, Acta Metall. Sinica, 2(2018)180-188.
DOI: 10.1007/s40195-017-0601-8
Google Scholar
[12]
M. Laleh, F. Kargar, A. S. Rouhaghdam, etal. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy, J. Rare Earths, 2012,30 (12) :1293-1297.
DOI: 10.1016/s1002-0721(12)60223-3
Google Scholar
[13]
P. Wang, J. P. Li , Y. C. Guo, etal. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys, J. Rare Earths, 5(2010)798-802.
DOI: 10.1016/s1002-0721(09)60204-0
Google Scholar
[14]
Z. X. Wang, W. G. Lv, J. Chen, etal. Characterization of ceramic coating on ZK60 magnesium alloy prepared in a dual electrolyte system by micro-arc oxidation, Rare Met., 5(2013)459-464.
DOI: 10.1007/s12598-013-0152-8
Google Scholar
[15]
D. Veys-renaux, C. E. Barchiche, E. Rocca. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates, Surf. Coat. Technol., 8(2014)232-238.
DOI: 10.1016/j.surfcoat.2014.04.031
Google Scholar
[16]
X. W. Guo, J. C. Guo, Z. C. Zhang, etal. New development trend of surface treatment technology for magnesium alloys, Surf. Technol., 3(2017)53-65.
Google Scholar
[17]
X. B. Wang, F. M. Quan, S. H. Li, etal. Microstructure and corrosion resistance of MAO coatings fabricated with low energy consumption on magnesium alloy, Light Alloy Fabr. Technol., 11(2015)50-55.
Google Scholar
[18]
E. Matykina, A. Berkani, P. Skeldon,etal. Real-time imaging of coating growth during plasma electro-lytic oxidation of titanium, Electrochem. Acta, 4(2007)1987-1994.
DOI: 10.1016/j.electacta.2007.08.074
Google Scholar
[19]
T. Mi, B. JIiang, Z. Liu, et al. Plasma formation mechanism of microarc oxidation, Electrochi. Acta, 4(2014)369-377.
Google Scholar
[20]
DUAN H, YAN C, WANG F. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochimica Acta. 2007, 52(15):5002-5009.
DOI: 10.1016/j.electacta.2007.02.021
Google Scholar
[21]
C. S. Dunleavy, I. O. Golosnoy. Characterisation of discharge events during plasma electrolytic oxidation, Surf. Coat. Technol., 22(2009)3410-3419.
DOI: 10.1016/j.surfcoat.2009.05.004
Google Scholar
[22]
Q. X. Liu, Q. Z. Cai, L. S. Wang, etal.The Changing regularity of spark form in microarc oxidation, Light Alloy Fabri. Technol., 5(2005)43-45.
Google Scholar
[23]
Z. H. Jiang, S. Li, Z. P. Yao, etal. Effect of electrolytes on structure and corrosion resistance of micro arc oxidation ceramic coating, Mater. Sci. Techonol., 5(2006)460-462.
Google Scholar
[24]
B. L. Jiang, X. F. Zhang. Growth rhythm and corrosion resistance of ceramic coatings formed by microarc oxidation on magnesium alloys in different conductivity solutions, Rare Met. Mater. Eng., 3(2005)393-396.
Google Scholar
[25]
C. S. Dunleavy, J. A. Curran, T. W. Clyne. Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium, Appl. Surf. Sci., 268(2013)397-409.
DOI: 10.1016/j.apsusc.2012.12.109
Google Scholar
[26]
A. NominÉ, S. C. Troughton, A. V. NominÉ, etal. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation, Surf. Coat. Technol., 1(2015)125-130.
DOI: 10.1016/j.surfcoat.2015.01.043
Google Scholar
[27]
J. D. Kim, N.Yee, V. Nanda, etal. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides[J].Proc. Nat. Acad. Sci. U. S. America, 25(2013)10073-10077.
DOI: 10.1073/pnas.1308958110
Google Scholar
[28]
H. Y. Ma, G. Q. Li, X. J. Wu, etal.The effect of chemical competitive reaction on the electrode process involving adsorption and desorption, J. Shandong Univ., 4(1999)459-467.
Google Scholar
[29]
X. M. Chen , C. P. Luo, J. W. Liu. Forming rule of coating during process of micro-arc oxidation on magnesium alloy, Mater. Eng., 12(2009)53-57.
Google Scholar
[30]
W. Krysmann, KURZE P., K. H. Dittrich, etal. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge(ANOF), Cryst. Res. Techol., 7(1984)973-979.
DOI: 10.1002/crat.2170190721
Google Scholar
[31]
A. L. Yerokhin, X. Nie, A. Leyland, etal. Plasma electrolysis for surface engineering, Surf. Coat. Technol., 2-3(1999): 73-93.
Google Scholar
[32]
G. Jin, W. Xiong, Y. H. Li, etal. Phases composition and performances of micro-arc oxidation ceramic film on pure aluminum, Light Alloy Fabri. Technol., 8(2008)38-40.
Google Scholar
[33]
Q. Wang, Q. C. Li, G. W. Chang. Developing Status in Quo Vadis of Quick-Solidification, J. Liaoning Inst. Technol., 5(2003)40-44.
Google Scholar
[34]
L. Katgerman, F. Dom. Rapidly solidified aluminium alloys by meltspinning, Mater. Sci. Eng. A, 21(2004)1212–1216.
DOI: 10.1016/j.msea.2003.10.094
Google Scholar
[35]
M. Sugamata, S. Hanawa, J. Kaneko. Structures and mechanical properties of rapidly solidified Mg-Y based alloys, Mater. Sci. Eng, 1(1997)861-866.
DOI: 10.1016/s0921-5093(97)80089-5
Google Scholar