Study on Micro-Arc Oxidation Behavior of AZ91 Magnesium Alloy in Aluminate Environmentally Friendly Electrolyte

Article Preview

Abstract:

In aluminate alkaline electrolyte the effect of aluminate on the microstructure and properties and the MAO(micro-arc oxidation) behavior of micro-arc oxide film of AZ91 magnesium alloy was studied. Transmission electron microscope(TEM), energy dispersive spectrum (EDS), X-ray diffraction(XRD), salt spray test and scanning electron microscope(SEM)were used to analyze and characterize the structure and properties of the film. The results show that the concentration of aluminate has an important effect on the tank voltage, corrosion resistance, surface morphology and phase structure of micro-arc oxidation film. The corrosion resistance and film quality of the film were increased first and then decreased, but the surface roughness decreased first and then increased with the increase of aluminate concentration from 5g/L to 30g/L. At our work, the concentration of 10g/L aluminate electrolyte is most favorable to the formation of micro-arc oxide film.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1003)

Pages:

67-75

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Wang, Y. Q. Zhao, H. M. Chen, etal. Improvement of mechanical properties of magnesium Alloy ZK60 by asymmetric reduction rolling, Acta Metall. Sinica, 1(2018) 63-70.

DOI: 10.1007/s40195-017-0649-5

Google Scholar

[2] H. Lin, M. B. Yang, H. Tang, etal. Effect of minor Sc on the microstructure and mechanical properties of AZ91 magnesium alloy, Prog. Nat. Sci.: Mater. Int., 1(2018)66-73.

DOI: 10.1016/j.pnsc.2018.01.006

Google Scholar

[3] D. D. Zhang, D.P. Zhang, F. Q. Bu, etal. Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5RE based alloy, Mater. Sci. Eng. A, 2(2017):51-59.

DOI: 10.1016/j.msea.2017.03.055

Google Scholar

[4] G. Yu, X. J.Wang, Y. J. Ooyang , etal. An electroplating process of magnesium Alloy without chromium and with low fluorine, J. Hunan Univ.(Nat. Sci.), 2008, 35(9):65-69.

Google Scholar

[5] L. P. Wu, J. J. Zhao ,Y. P. Xie, etal. Progress of electroplating and electroless plating on magnesium alloy, Trans. Nonferr. Met. Soc. China, s2(2010)s630-s639.

Google Scholar

[6] Y. N. Gou, D. F. Zhang , D. Yi, etal. Effect of amino acid on the anodic oxidation of magnesium alloy and its mechanism, Rare Met. Mater. Eng., 4(2017)1103-1109.

Google Scholar

[7] Y. P. Liu, T. T. Li, J. Li, etal. Growth dynamics process of anodic film formed on magnesium alloy[, Rare Met. Mater. Eng., 4(2014)1013-1018.

Google Scholar

[8] K. H. Dong , Y. W. Song , D. Y. Dan , etal. Research progress of micro-arc oxidation technology on magnesium alloys, Surf. Technol., 3(2015)74-80.

Google Scholar

[9] Y. B. Zhao , L. Q. Shi , L. Y. Cui, etal. Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys, Acta Metall. Sinica, 2(2018)180-188.

DOI: 10.1007/s40195-017-0601-8

Google Scholar

[10] Z. U. Rehman, Y. S. Jeong, B. H. Koo . Effect of processing time on the microarc oxidation coatings produced on magnesium AZ61 alloy at constant hybrid voltage, Korean J. Mater. Res., 10(2015)509-515.

DOI: 10.3740/mrsk.2015.25.10.509

Google Scholar

[11] Y. B. Zhao , L. Q. Shi, L. Y. Cui, etal. Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys, Acta Metall. Sinica, 2(2018)180-188.

DOI: 10.1007/s40195-017-0601-8

Google Scholar

[12] M. Laleh, F. Kargar, A. S. Rouhaghdam, etal. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy, J. Rare Earths, 2012,30 (12) :1293-1297.

DOI: 10.1016/s1002-0721(12)60223-3

Google Scholar

[13] P. Wang, J. P. Li , Y. C. Guo, etal. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys, J. Rare Earths,  5(2010)798-802.

DOI: 10.1016/s1002-0721(09)60204-0

Google Scholar

[14] Z. X. Wang, W. G. Lv, J. Chen, etal. Characterization of ceramic coating on ZK60 magnesium alloy prepared in a dual electrolyte system by micro-arc oxidation, Rare Met., 5(2013)459-464.

DOI: 10.1007/s12598-013-0152-8

Google Scholar

[15] D. Veys-renaux,  C. E. Barchiche, E. Rocca. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates, Surf. Coat. Technol., 8(2014)232-238.

DOI: 10.1016/j.surfcoat.2014.04.031

Google Scholar

[16] X. W. Guo, J. C. Guo, Z. C. Zhang, etal. New development trend of surface treatment technology for magnesium alloys, Surf. Technol., 3(2017)53-65.

Google Scholar

[17] X. B. Wang, F. M. Quan, S. H. Li, etal. Microstructure and corrosion resistance of MAO coatings fabricated with low energy consumption on magnesium alloy, Light Alloy Fabr. Technol., 11(2015)50-55.

Google Scholar

[18] E. Matykina, A. Berkani, P. Skeldon,etal. Real-time imaging of coating growth during plasma electro-lytic oxidation of titanium, Electrochem. Acta, 4(2007)1987-1994.

DOI: 10.1016/j.electacta.2007.08.074

Google Scholar

[19] T. Mi, B. JIiang, Z. Liu, et al. Plasma formation mechanism of microarc oxidation, Electrochi. Acta, 4(2014)369-377.

Google Scholar

[20] DUAN H, YAN C, WANG F. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochimica Acta. 2007, 52(15):5002-5009.

DOI: 10.1016/j.electacta.2007.02.021

Google Scholar

[21] C. S. Dunleavy, I. O. Golosnoy. Characterisation of discharge events during plasma electrolytic oxidation, Surf. Coat. Technol., 22(2009)3410-3419.

DOI: 10.1016/j.surfcoat.2009.05.004

Google Scholar

[22] Q. X. Liu, Q. Z. Cai, L. S. Wang, etal.The Changing regularity of spark form in microarc oxidation, Light Alloy Fabri. Technol., 5(2005)43-45.

Google Scholar

[23] Z. H. Jiang, S. Li, Z. P. Yao, etal. Effect of electrolytes on structure and corrosion resistance of micro arc oxidation ceramic coating, Mater. Sci. Techonol., 5(2006)460-462.

Google Scholar

[24] B. L. Jiang, X. F. Zhang. Growth rhythm and corrosion resistance of ceramic coatings formed by microarc oxidation on magnesium alloys in different conductivity solutions, Rare Met. Mater. Eng., 3(2005)393-396.

Google Scholar

[25] C. S. Dunleavy, J. A. Curran, T. W. Clyne. Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium, Appl. Surf. Sci., 268(2013)397-409.

DOI: 10.1016/j.apsusc.2012.12.109

Google Scholar

[26] A. NominÉ, S. C. Troughton, A. V. NominÉ, etal. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation, Surf. Coat. Technol., 1(2015)125-130.

DOI: 10.1016/j.surfcoat.2015.01.043

Google Scholar

[27] J. D. Kim, N.Yee,  V. Nanda, etal. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides[J].Proc. Nat. Acad. Sci. U. S. America, 25(2013)10073-10077.

DOI: 10.1073/pnas.1308958110

Google Scholar

[28] H. Y. Ma, G. Q. Li, X. J. Wu, etal.The effect of chemical competitive reaction on the electrode process involving adsorption and desorption, J. Shandong Univ., 4(1999)459-467.

Google Scholar

[29] X. M. Chen , C. P. Luo, J. W. Liu. Forming rule of coating during process of micro-arc oxidation on magnesium alloy, Mater. Eng., 12(2009)53-57.

Google Scholar

[30] W. Krysmann, KURZE P., K. H. Dittrich, etal. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge(ANOF), Cryst. Res. Techol., 7(1984)973-979.

DOI: 10.1002/crat.2170190721

Google Scholar

[31] A. L. Yerokhin, X. Nie, A. Leyland, etal. Plasma electrolysis for surface engineering, Surf. Coat. Technol., 2-3(1999): 73-93.

Google Scholar

[32] G. Jin, W. Xiong, Y. H. Li, etal. Phases composition and performances of micro-arc oxidation ceramic film on pure aluminum, Light Alloy Fabri. Technol., 8(2008)38-40.

Google Scholar

[33] Q. Wang, Q. C. Li, G. W. Chang. Developing Status in Quo Vadis of Quick-Solidification, J. Liaoning Inst. Technol., 5(2003)40-44.

Google Scholar

[34] L. Katgerman, F. Dom. Rapidly solidified aluminium alloys by meltspinning, Mater. Sci. Eng. A, 21(2004)1212–1216.

DOI: 10.1016/j.msea.2003.10.094

Google Scholar

[35] M. Sugamata, S. Hanawa, J. Kaneko. Structures and mechanical properties of rapidly solidified Mg-Y based alloys, Mater. Sci. Eng, 1(1997)861-866.

DOI: 10.1016/s0921-5093(97)80089-5

Google Scholar