Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for Bio-Ethanol Production

Article Preview

Abstract:

The objective of this research is to study the influence of temperature on drying and changes in carbohydrate composition during the drying. Chlorella pyrenoidosa was dried in oven at various temperatures and initial weight 2 g. The initial moisture content of Chlorella pyrenoidosa was 487.2% dry weight and the composition was hemicellulose (62.76), cellulose (2.39), and lignin (0.46% dry weight). Every 5 min, the moisture content was recorded. The critical moisture contents of Chlorella pyrenoidosa at 50, 60, and 70 °C are 7.2, 3.9, and 3.1% dry weight, respectively. Meanwhile, the equilibrium water contents are 0.53, 0.32, and 0.12% dry weight, respectively. The carbohydrate content in Chlorella pyrenoidosa cell as a result FTIR analysis indicates that the higher temperature of drying the carbohydrate content increases. Drying of Chlorella pyrenoidosa at temperatures of 50, 60, and 70 °C will decrease moisture content without disturb carbohydrate molecule, so the carbohydrate content increases. Therefore, drying of Chlorella pyrenoidosa before converting become bio-ethanol will give benefit to increase the carbohydrate content and initial rupturing of it’s cell.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1007)

Pages:

1-5

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Sirajunnisa and D. Surendhiran, Algae–A quintessential and positive resource of bioethanol production: A comprehensive review, Renew. Sustain. Energy Rev. 66 (2016) 248–267.

DOI: 10.1016/j.rser.2016.07.024

Google Scholar

[2] S.A. Jambo, R. Abdulla, S.H. Mohd Azhar, H. Marbawi, J.A. Gansau, and P. Ravindra, A review on third generation bioethanol feedstock, Renew. Sustain. Energy Rev. 65 (2016) 756–769.

DOI: 10.1016/j.rser.2016.07.064

Google Scholar

[3] C.G. Liu, K. Li, Y. Wen, B.Y. Geng, Q. Liu, and Y.H. Lin, Bioethanol: New opportunities for an ancient product, in: Advances in Bioenergy, Elsevier Inc., 2019, pp.1-34.

DOI: 10.1016/bs.aibe.2018.12.002

Google Scholar

[4] A.B. Ross, J.M. Jones, M.L. Kubacki, and T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 99 (2008) 6494–6504.

DOI: 10.1016/j.biortech.2007.11.036

Google Scholar

[5] C.S. Goh and K.T. Lee, A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sustain. Energy Rev. 14 (2010) 842–848.

DOI: 10.1016/j.rser.2009.10.001

Google Scholar

[6] K.H. Kim, I.S. Choi, H.M. Kim, S.G. Wi, and H.J. Bae, Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation, Bioresour. Technol. 153 (2014) 47–54.

DOI: 10.1016/j.biortech.2013.11.059

Google Scholar

[7] V.R. Moreira, Y.A.R. Lebron, S.J. Freire, L.V.S. Santos, F. Palladino, and R.S. Jacob, Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies, Microchem. J. 145 (2019) 119–129.

DOI: 10.1016/j.microc.2018.10.027

Google Scholar

[8] X. Zhao, X. Tan, L. Yang, J. Liao, and X. Li, Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: the coupled effects of ammonium, temperature and pH conditions on lipids compositions, Bioresour. Technol. 284 (2019) 90-97.

DOI: 10.1016/j.biortech.2019.03.117

Google Scholar

[9] A. Raheem, P. Prinsen, A.K. Vuppaladadiyam, M. Zhao, and R. Luque, A review on sustainable microalgae based biofuel and bioenergy production: Recent developments, J. Cleaner Prod. 181 (2018) 42–59.

DOI: 10.1016/j.jclepro.2018.01.125

Google Scholar

[10] C.Y. Chen, X.Q. Zhao, H.W. Yen, S.H. Ho, C.L. Cheng, D.J. Lee, F.W. Bai, and J.S. Chang, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. 78 (2013) 1–10.

DOI: 10.1016/j.bej.2013.03.006

Google Scholar

[11] B.H.H. Goh, H.C. Ong, M.Y. Cheah, W.H. Chen, K.L. Yu, and T.M.I. Mahlia, Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review, Renew. Sustain. Energy Rev. 107(C) (2019) 59–74.

DOI: 10.1016/j.rser.2019.02.012

Google Scholar

[12] T. Viswanathan, S. Mani, K.C. Das, S. Chinnasamy, A. Bhatnagar, R.K. Singh, and M. Singh, Effect of Cell Rupturing Methods on The Drying Characteristics an Lipid Compositions of Microalgae, Bioresour. Technol. 126 (2012) 131-136.

DOI: 10.1016/j.biortech.2012.08.122

Google Scholar

[13] T. Simioni, M.B. Quadri, and R.B. Derner, Drying of Scenedesmus obliquus: Experimental and modeling study, Algal Res. 39 (2019) 101428.

DOI: 10.1016/j.algal.2019.101428

Google Scholar

[14] H. Hosseinizand, S. Sokhansanj, and C.J. Lim, Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics, Drying Technol. 36 (2018) 1049–1060.

DOI: 10.1080/07373937.2017.1369986

Google Scholar

[15] A.R.C. Villagracia, A.P. Mayol, A.T. Ubando, J.B.M.M. Biona, N.B. Arboleda Jr., M.Y. David, R.B. Tumlos, H. Lee Jr., O.H. Lin, R.A. Espiritu, A.B. Culaba, and H. Kasai, Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production, Clean Technol. Environ. Policy 18 (2016) 2441–2451.

DOI: 10.1007/s10098-016-1169-0

Google Scholar

[16] S.K., Bagchi, P.S. Rao, and N. Mallick, Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp, Bioresour. Technol. 180 (2015) 207-213.

DOI: 10.1016/j.biortech.2014.12.092

Google Scholar

[17] A.P. Biz, L. Cardozo-Filho, and E.F. Zanoelo, Drying dynamics of microalgae (Chlorella pyrenoidosa) dispersion droplets, Chem. Eng. Proc. Intensification 138 (2019) 41–48.

DOI: 10.1016/j.cep.2019.03.007

Google Scholar

[18] D. Fithriani, L. Assadad, and A. Siregar, Karakteristik dan Model Matematika Kurva Pengeringan Rumput Laut Eucheuma cottonii Characteristics and Mathematical Model of Drying Curve of Eucheuma cottonii Seaweed, JPB Kelautan dan Perikanan 11 (2016) 159–170.

DOI: 10.15578/jpbkp.v11i2.290

Google Scholar

[19] Karaaslan, Sevil, O. Uysal, F.O. Uysal, K. Ekinci, and B.S. Kumbul, Mathematical Modelling of Drying of Chlorella sp., Neochloris conjuncta and Botrococcus braunii at Different Drying Conditions, European J. Suistain. Dev. 5 (2016) 421-430.

DOI: 10.14207/ejsd.2016.v5n4p421

Google Scholar

[20] A.F.R. Silva, H. Abreu, A.M.S. Silva, and S.M. Cardoso, Effect of Oven-Drying on the Recovery of Valuable Compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus, Mar. Drugs 17 (2019) 1-17.

DOI: 10.3390/md17020090

Google Scholar

[21] H. Hosseinizand, S. Sokhansanj, and C.J. Lim, Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics, Drying Technol. 3937 (2017).

DOI: 10.1080/07373937.2017.1369986

Google Scholar

[22] B Ş. Sert, B. İnan, and D. Özçimen, Effect of Chemical Pre-treatments on Bioethanol Production from Chlorella minutissima, Acta Chim. Slov 65 (2018) 160–165.

DOI: 10.17344/acsi.2017.3728

Google Scholar