[1]
National Oceanic and Atmospheric Administration (NOAA), ESRL data. Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html, (2019).
Google Scholar
[2]
Oda, T. and Maksyutov, S.: A Very High-Resolution (1 km×1 km) Global Fossil Fuel CO2 Emission Inventory Derived Using a Point Source Database and Satellite Observations of Nighttime Lights, Atmos. Chem. Phys., 11, 543-556,.
DOI: 10.5194/acp-11-543-2011
Google Scholar
[3]
Overview- CO2 Emissions from Fuel Combustion 2018, International Energy Agency.
Google Scholar
[4]
Global Energy and CO2 Status Report 2018, the latest trends in energy and emissions in 2018, International Energy Agency.
Google Scholar
[5]
Wang, Yuan, Li Zhao, Alexander Otto, Martin Robinius, and Detlef Stolten. A Review of Post-combustion CO2 Capture Technologies from Coal-Fired Power Plants. Energy Procedia 114 (2017), pp.650-665.
DOI: 10.1016/j.egypro.2017.03.1209
Google Scholar
[6]
CO2 Capturing Technologies, Post Combustion Capture (PCC), January 2012, Global CCS Institute.
Google Scholar
[7]
Kanniche, Mohamed, René Gros-Bonnivard, Philippe Jaud, Jose Valle-Marcos, Jean-Marc Amann, and Chakib Bouallou. Pre-combustion, Post-combustion and Oxy-combustion in Thermal Power Plant for CO2 Capture. Applied Thermal Engineering 30 (1) (2010), pp.53-62.
DOI: 10.1016/j.applthermaleng.2009.05.005
Google Scholar
[8]
Scholes, Colin A., Kathryn H. Smith, Sandra E. Kentish, and Geoff W. Stevens. CO2 Capture from Pre-combustion Processes—Strategies for Membrane Gas Separation. International Journal of Greenhouse Gas Control 4 (5) (2010), pp.739-755.
DOI: 10.1016/j.ijggc.2010.04.001
Google Scholar
[9]
Wall, Terry F. Combustion Processes for Carbon Capture. Proceedings of the combustion institute 31 (1) (2007), pp.31-47.
Google Scholar
[10]
Uchida, Terutoshi, Takahiro Goto, Toshihiko Yamada, Takashi Kiga, and Chris Spero. Oxyfuel combustion as CO2 capture technology advancing for practical use-callide oxyfuel project. Energy Procedia 37 (2013), pp.1471-1479.
DOI: 10.1016/j.egypro.2013.06.022
Google Scholar
[11]
Buhre, Bart JP, Liza K. Elliott, C. D. Sheng, Rajender P. Gupta, and Terry F. Wall. Oxy-fuel Combustion Technology for Coal-Fired Power Generation. Progress in energy and combustion science 31 (4) (2005), pp.283-307.
DOI: 10.1016/j.pecs.2005.07.001
Google Scholar
[12]
Yu, Cheng-Hsiu, Chih-Hung Huang, and Chung-Sung Tan. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res 12 (5) (2012), pp.745-769.
DOI: 10.4209/aaqr.2012.05.0132
Google Scholar
[13]
Scholes, Colin A., Kathryn H. Smith, Sandra E. Kentish, and Geoff W. Stevens. CO2 capture from Pre-combustion Processes—Strategies for Membrane Gas Separation. International Journal of Greenhouse Gas Control 4 (5) (2010), pp.739-755.
DOI: 10.1016/j.ijggc.2010.04.001
Google Scholar
[14]
Brunetti, Adele, Francesco Scura, Giuseppe Barbieri, and Enrico Drioli. "Membrane Technologies for CO2 Separation. Journal of Membrane Science 359 (1-2) (2010), pp.115-125.
DOI: 10.1016/j.memsci.2009.11.040
Google Scholar
[15]
C. Hoeger, C. Bence, S. S. Burt, A. Baxter, and L. Baxter, Cryogenic CO2 Capture for Improved Efficiency at Reduced Cost, in Proceedings of the AIChE Annual Meeting, November (2010).
Google Scholar
[16]
S. Burt, A. Baxter, and L. Baxter, Cryogenic CO2 capture to control climate change emissions, in Proceedings of the 34th International Technical Conference on Clean Coal & Fuel Systems, May (2009).
Google Scholar
[17]
M. J.Tuinier, H. P.Hamers, and M. van Sint Annaland, Technoeconomic evaluation of cryogenic CO2 capture-A comparison with absorption and membrane technology," International Journal of Greenhouse Gas Control 5 (6) (2011), p.1559–1565.
DOI: 10.1016/j.ijggc.2011.08.013
Google Scholar
[18]
Xu, Gang, Feifei Liang, Yongping Yang, Yue Hu, Kai Zhang, and Wenyi Liu. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies 7 (5) (2014), pp.3484-3502.
DOI: 10.3390/en7053484
Google Scholar
[19]
Knapik, Ewa, Piotr Kosowski, and Jerzy Stopa. Cryogenic Liquefaction and Separation of CO2 using Nitrogen Removal Unit Cold Energy. Chemical Engineering Research and Design 131 (2018), pp.66-79.
DOI: 10.1016/j.cherd.2017.12.027
Google Scholar
[20]
K. E. Zanganeh, A. Shafeen, and C. Salvador, CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression unit, Energy Procedia 1 (2009), p.247–252.
DOI: 10.1016/j.egypro.2009.01.035
Google Scholar
[21]
Goos, Elke, Uwe Riedel, Li Zhao, and Ludger Blum. Phase Diagrams of CO2 and CO2–N2 Gas Mixtures and Their Application in Compression Processes. Energy Procedia 4 (2011), pp.3778-3785.
DOI: 10.1016/j.egypro.2011.02.312
Google Scholar
[22]
Espanani, Reza, Andrew Miller, Allen Busick, Doug Hendry, and William Jacoby. Separation of N2/CO2 Mixture Using a Continuous High-Pressure Density-Driven Separator. Journal of CO2 Utilization 14 (2016), pp.67-75.
DOI: 10.1016/j.jcou.2016.02.012
Google Scholar
[23]
Hendry, Doug, Andrew Miller, Nikolas Wilkinson, Malithi Wickramathilaka, Reza Espanani, and William Jacoby. Exploration of High-Pressure Equilibrium Separations of Nitrogen and Carbon Dioxide. Journal of CO2 Utilization 3 (2013), pp.37-43.
DOI: 10.1016/j.jcou.2013.09.002
Google Scholar
[24]
Data from NIST website https://webbook.nist.gov/chemistry/fluid/.
Google Scholar
[25]
Jacobsen, Richard T., Richard B. Stewart, and Majid Jahangiri. Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa. Journal of Physical and Chemical Reference Data 15 (2) (1986), pp.735-909.
DOI: 10.1063/1.555754
Google Scholar
[26]
Ely, James F., William M. Haynes, and J. W. Magee. Thermophysical Properties for Special High CO2 Content Mixtures. Gas Processors Association, (1987).
Google Scholar
[27]
Span, Roland, and Wolfgang Wagner. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of physical and chemical reference data 25 (6) (1996), pp.1509-1596.
DOI: 10.1063/1.555991
Google Scholar
[28]
Span, Roland, Eric W. Lemmon, Richard T. Jacobsen, Wolfgang Wagner, and Akimichi Yokozeki. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and Chemical Reference Data 29 (6) (2000), pp.1361-1433.
DOI: 10.1063/1.1349047
Google Scholar
[29]
http://www.peacesoftware.de/einigewerte/einigewerte_e.html.
Google Scholar