[1]
A. Chavez-Valdez, M.S.P. Shaffer, A.R. Boccaccini, Applications of graphene electrophoretic deposition. A review, J. Phys. Chem. B. 117 (2013) 1502–1515.
DOI: 10.1021/jp3064917
Google Scholar
[2]
B.J.C. Thomas, A.R. Boccaccini, M.S.P. Shaffer, Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD), J. Am. Ceram. Soc. 88 (2005) 980–982.
DOI: 10.1111/j.1551-2916.2005.00155.x
Google Scholar
[3]
L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61.
Google Scholar
[4]
O.O. Van der Biest, L.J. Vandeperre, Electrophoretic deposition of materials, Annu. Rev. Mater. Sci. (1999).
DOI: 10.1146/annurev.matsci.29.1.327
Google Scholar
[5]
K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Electric field in atomically thin carbon films, Science (80-. ). 306 (2004) 666–669.
DOI: 10.1126/science.1102896
Google Scholar
[6]
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. (2010).
DOI: 10.1002/adma.201001068
Google Scholar
[7]
S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon N. Y. 50 (2012) 3210–3228.
Google Scholar
[8]
R.S.R. Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.pdf, Carbon N. Y. 45 (2007) 1558–1565. doi:https://doi.org/10.1016/j.carbon.2007.02.034.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar
[9]
G. S., H. S.R., M. F., Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell, Colloids Surfaces A Physicochem. Eng. Asp. (2017).
DOI: 10.1016/j.colsurfa.2017.02.004
Google Scholar
[10]
Y. Long, B. Zeng, J. Liu, Y. Yang, N. Li, Z. Wu, Field emission of MgO-coated graphene sheets prepared by electrophoretic deposition, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. (2014).
Google Scholar
[11]
O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano. (2010).
DOI: 10.1021/nn101390x
Google Scholar
[12]
L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: A robust electrochemical platform for TNT sensing, Chem. Commun. (2010).
DOI: 10.1039/c0cc01212b
Google Scholar
[13]
S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor, Int. J. Hydrogen Energy. (2015).
DOI: 10.1016/j.ijhydene.2014.11.072
Google Scholar
[14]
J.H. Park, J.M. Park, Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application, Surf. Coatings Technol. (2014).
DOI: 10.1016/j.surfcoat.2014.06.007
Google Scholar
[15]
T.X.H. Le, M. Bechelany, S. Lacour, N. Oturan, M.A. Oturan, M. Cretin, High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode, Carbon N. Y. (2015).
DOI: 10.1016/j.carbon.2015.07.086
Google Scholar
[16]
E. Hares, A.H. El-Shazly, M.F. El-Kady, A.S. Hammad, Electrophoretic Deposition of Graphene Oxide Nanosheets on Copper Pipe for Corrosion Protection, Arab. J. Sci. Eng. (2019).
DOI: 10.1007/s13369-019-03872-0
Google Scholar
[17]
W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem. (2009).
Google Scholar
[18]
S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R.S. Ruoff, Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition, J. Phys. Chem. Lett. 1 (2010) 1259–1263.
DOI: 10.1021/jz100080c
Google Scholar
[19]
A. Hajizadeh, M. Aliofkhazraei, M. Hasanpoor, E. Mohammadi, Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic and aqueous solutions, Ceram. Int. (2018).
DOI: 10.1016/j.ceramint.2018.03.168
Google Scholar