Experimental and Theoretical Studies of Thermophysical Properties of MgO-Water Nanofluid

Article Preview

Abstract:

Magnesium oxide (MgO) nanoparticles were synthesized using the sol-gel technique then characterized. Cetyl Trimethyl Ammonium Bromide (CTAB) surfactant was added to reduce Van der Waal forces among MgO nanoparticles and distilled water forming a stable nanofluid using two-step method with aid of ultrasound sonication. Pure distilled water and nanofluids with different volume fractions of 0.25, 0.5, 0.75, and 1% are used as working fluids. Thermophysical properties of prepared nanofluids were measured experimentally and determined theoretically. Effect of solid volume fraction on the thermophysical properties; including thermal conductivity, heat capacity, viscosity, and density of MgO-water nanofluids are discussed. Moreover, experimental results have been compared with the suitable correlations for MgO-water nanofluid. The findings show that thermal conductivity, viscosity, and density of nanofluid increases with increasing solid volume fraction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

47-52

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kasaeian, A. T. Eshghi, and M. Sameti, A review on the applications of nanofluids in solar energy systems,, Renewable and Sustainable Energy Reviews. (2015).

DOI: 10.1016/j.rser.2014.11.020

Google Scholar

[2] G. Huminic and A. Huminic, Application of nanofluids in heat exchangers: A review,, Renewable and Sustainable Energy Reviews. (2012).

DOI: 10.1016/j.rser.2012.05.023

Google Scholar

[3] T. Srinivas and A. Venu Vinod, Performance of an agitated helical coil heat exchanger using Al2O3/water nanofluid,, Exp. Therm. Fluid Sci., (2013).

DOI: 10.1016/j.expthermflusci.2013.07.003

Google Scholar

[4] A. Y. M. Ali, A. H. El-Shazly, M. F. El-Kady, H. I. Fathi, and M. R. El-Marghany, Effect of Using MgO-Oil Nanofluid on the Performance of a Counter-Flow Double Pipe Heat Exchanger,, Key Eng. Mater., (2019).

DOI: 10.4028/www.scientific.net/kem.801.193

Google Scholar

[5] J. Wilk, R. Smusz, and S. Grosicki, Thermophysical properties of water based Cu nanofluid used in special type of coil heat exchanger,, Appl. Therm. Eng., (2017).

DOI: 10.1016/j.applthermaleng.2017.08.078

Google Scholar

[6] R. Smusz and J. Wilk, Experimental and theoretical investigations of special type coil heat exchanger with the nanofluid buffer layer,, in E3S Web of Conferences, (2017).

DOI: 10.1051/e3sconf/20171302005

Google Scholar

[7] R. Taylor et al., Small particles, big impacts: A review of the diverse applications of nanofluids,, Journal of Applied Physics. (2013).

Google Scholar

[8] R. Saidur, K. Y. Leong, and H. A. Mohammad, A review on applications and challenges of nanofluids,, Renewable and Sustainable Energy Reviews. (2011).

Google Scholar

[9] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles,, in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, (1995).

Google Scholar

[10] J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, Enhanced thermal conductivity through the development of nanofluids,, in Materials Research Society Symposium - Proceedings, (1997).

Google Scholar

[11] X. Wang, X. Xu, and S. U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture,, J. Thermophys. heat Transf., (1999).

Google Scholar

[12] S. U. S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles,, J. Heat Transfer, (1999).

Google Scholar

[13] Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids,, Int. J. Heat Fluid Flow, (2000).

Google Scholar

[14] H. Jiang, H. Li, C. Zan, F. Wang, Q. Yang, and L. Shi, Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid,, Thermochim. Acta, (2014).

DOI: 10.1016/j.tca.2014.01.012

Google Scholar

[15] A. Y. M. Ali, A. H. El-Shazly, M. F. El-Kady, and S. E. Abdelhafez, Evaluation of surfactants on thermo-physical properties of Magnesia-oil nanofluid,, in Materials Science Forum, (2018).

DOI: 10.4028/www.scientific.net/msf.928.106

Google Scholar

[16] A. A. Abbasian Arani, H. Aberoumand, S. Aberoumand, A. Jafari Moghaddam, and M. Dastanian, An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube,, Heat Mass Transf. und Stoffuebertragung, (2016).

DOI: 10.1007/s00231-015-1686-0

Google Scholar

[17] A. Jafarimoghaddam and S. Aberoumand, An empirical investigation on Cu/Ethylene Glycol nanofluid through a concentric annular tube and proposing a correlation for predicting Nusselt number,, Alexandria Eng. J., (2016).

DOI: 10.1016/j.aej.2016.03.005

Google Scholar

[18] S. Aberoumand and A. Jafarimoghaddam, Mixed convection heat transfer of nanofluids inside curved tubes: An experimental study,, Appl. Therm. Eng., (2016).

DOI: 10.1016/j.applthermaleng.2016.06.032

Google Scholar

[19] A. Jafarimoghaddam, S. Aberoumand, H. Aberoumand, and K. Javaherdeh, Experimental Study on Cu/Oil Nanofluids through Concentric Annular Tube: A Correlation,, Heat Transf. - Asian Res., (2017).

DOI: 10.1002/htj.21210

Google Scholar

[20] S. Aberoumand, A. Jafarimoghaddam, H. Aberoumand, and K. Javaherdeh, On the Viscosity of Ag/Oil Based Nanofluids: A Correlation,, Heat Transf. Res., (2017).

DOI: 10.1002/htj.21193

Google Scholar

[21] M. Hemmat Esfe, S. Saedodin, and M. Mahmoodi, Experimental studies on the convective heat transfer performance and thermophysical properties of MgO-water nanofluid under turbulent flow,, Exp. Therm. Fluid Sci., (2014).

DOI: 10.1016/j.expthermflusci.2013.08.023

Google Scholar

[22] W. Duangthongsuk and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,, Exp. Therm. Fluid Sci., (2009).

DOI: 10.1016/j.expthermflusci.2009.01.005

Google Scholar