[1]
Information on http://en.wikipedia.org/wiki/Solar_cell, 30.05.(2019).
Google Scholar
[2]
F. Endres, Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors, ChemPhysChem 3, 2 (2002) 144-154.
DOI: 10.1002/1439-7641(20020215)3:2<144::aid-cphc144>3.0.co;2-#
Google Scholar
[3]
W.-L. Liu, S.-H. Hsieh, W.-J. Chen, P.-I. Wei, and J.-H. Lee, Synthesis of the CuInSe2 thin film for solar cells using the electrodeposition technique and Taguchi method, Int. J. Minerals, Metallurgy & Materials 16, 1 (2009) 101–107.
DOI: 10.1016/s1674-4799(09)60017-0
Google Scholar
[4]
R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C. R. Wronski,Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry, Solar Energy Materials and Solar Cells 78 (1-4), (2003) 143-180.
DOI: 10.1016/s0927-0248(02)00436-1
Google Scholar
[5]
Information on http://www.nrel.gov by National Renewable Energy Laboratory (NREL), USA, 30.05.(2019).
Google Scholar
[6]
M. Ohring, D. Gall, S.P. Baker, Materials Science of Thin Films: Deposition and structure, 3rd edition, Academic Press, (2014).
Google Scholar
[7]
S.S. Alias, A.A. Mohamad, Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells, Springer Briefs in Materials, (2014).
Google Scholar
[8]
G. Hodes, Chemical solution deposition of semiconductor films, 1st Edition, CRC Press, (2002).
Google Scholar
[9]
R. Jayakrishnan, G. Hodes, Non-aqueous electrodeposition of ZnO and CdO films, Thin Solid Films 440 (2003) 19-25.
DOI: 10.1016/s0040-6090(03)00811-3
Google Scholar
[10]
D. Lincot, Electrodeposition of semiconductors, Thin Solid Films 478, 1-2 (2005) 40-48.
Google Scholar
[11]
T.E. Schlesinger, K. Rajeshwar, N.R.D. Tacconi, Electrodeposition of semiconductors, in M. Schlesinger, M. Paunovic (Eds.), Modern Electroplating, 5th Edition, John Wiley & Sons, Inc., 2010, pp.383-411.
DOI: 10.1002/9780470602638.ch14
Google Scholar
[12]
D.O. Flamini, S.B. Saidman. J.B. Bessone, Electrodeposition of gallium onto vitreous carbon, J. Appl. Electrochem. 37 (2007) 467-471.
DOI: 10.1007/s10800-006-9277-x
Google Scholar
[13]
A.B. Moghaddam, T.N.J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film, Int. J. Electrochem. Sci. 4 (2009) 247-257.
Google Scholar
[14]
K.G. Deepa, N.L. Shruthi, M.A. Sunil, J. Nagaraju, Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics, Thin Solid Films 551 (2014) 1–7.
DOI: 10.1016/j.tsf.2013.10.180
Google Scholar
[15]
P.-Y. Chen, Y.-F. Lin, I.-W. Sun, Electrochemistry of gallium in the lewis acidic aluminum chloride‐1‐methyl‐3‐ethylimidazolium chloride room‐temperature molten salt, J. Electrochem. Soc. 146 (1999) 3290-3294.
DOI: 10.1149/1.1392469
Google Scholar
[16]
M. Harati, D. Love, W.M. Lau, Z. Ding, Preparation of crystalline zinc oxide films by one-step electrodeposition in Reline, Materials Letters 89 (2012) 339–342.
DOI: 10.1016/j.matlet.2012.08.136
Google Scholar
[17]
A. Bakkar, V. Neubert, Verfahren zur galvanischen Abscheidung wenigstens eines Metalls oder Halbleiters Deutsche Patent DE102011055911B3. (2012).
Google Scholar
[18]
V. Neubert, A. Bakkar, Process for the galvanic deposition of at least one metal or semiconductor, European Patent EP 2599896 A3. (2014).
Google Scholar
[19]
A. Bakkar, V. Neubert, A new method for practical electrodeposition of aluminium from ionic liquids, Electrochem. Commun. 51 (2015) 113-116.
DOI: 10.1016/j.elecom.2014.12.012
Google Scholar
[20]
P. Wasserscheid, T. Welton (editors), Ionic Liquids in Synthesis, VCH-Wiley, (2002).
Google Scholar
[21]
H. Ohno (editor), Electrochemical Aspects of Ionic Liquids, John Wiley, New Jersey, (2005).
Google Scholar
[22]
T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chemical Reviews 99 (1999) 2071-2084.
DOI: 10.1021/cr980032t
Google Scholar
[23]
K.R. Seddon, Ionic liquids for clean technology, J. Chem. Technol. Biotechnol. 68 (1997) 351-356.
DOI: 10.1002/(sici)1097-4660(199704)68:4<351::aid-jctb613>3.0.co;2-4
Google Scholar
[24]
F.H. Hurley, T.P. Wier, The electrodeposition of aluminum from nonaqueous solutions at room temperature, J. Electrochem. Soc. 98 (1951) 207-212.
DOI: 10.1149/1.2778133
Google Scholar
[25]
H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, J. Am. Chem. Soc. 97 (1975) 3264-3265.
DOI: 10.1021/ja00844a081
Google Scholar
[26]
J. Robinson, R.A. Osteryoung,An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride, J. Am. Chem. Soc. 101 (1979) 323-327.
DOI: 10.1021/ja00496a008
Google Scholar
[27]
J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis, Inorg. Chem. 21 (1982) 1263-1264.
DOI: 10.1021/ic00133a078
Google Scholar
[28]
C.L. Hussey, Room temperature molten salt systems, Adv. Molten Salt Chem. 5 (1983) 185-230.
Google Scholar
[29]
D. Appleby, C.L. Hussey, K.R. Seddon, J.E. Turp, Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes, Nature 323 (1986) 614-616.
DOI: 10.1038/323614a0
Google Scholar
[30]
J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc. Chem. Comm. (1992) 965-967.
DOI: 10.1039/c39920000965
Google Scholar
[31]
F. Endres, Ionic liquids: Promising solvents for electrochemistry, Z. Phys. Chem. 218 (2004) 255-283.
Google Scholar
[32]
P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-1178.
DOI: 10.1021/ic951325x
Google Scholar
[33]
A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB00/01090. (1999).
Google Scholar
[34]
A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB01/04300. (2000).
Google Scholar
[35]
A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB01/04306. (2000).
Google Scholar
[36]
A. Bakkar, V. Neubert, Electrodeposition onto magnesium in air and water stable ionic Liquids: From Corrosion to Successful Plating, Electrochem. Commun. 9 (2007) 2428-2435.
DOI: 10.1016/j.elecom.2007.07.010
Google Scholar
[37]
A.P. Abbott, G. Frisch, K.S. Ryder, Electroplating using ionic liquids, Annual Review Matter. Res. 43 (2013) 335-338.
DOI: 10.1146/annurev-matsci-071312-121640
Google Scholar
[38]
R.C. DeMattei, R.S. Feigelson, Electrochemical Deposition of Semiconductors. In: McHardy J., Ludeig F. (Eds.) Electrochemistry of Semiconductors and Electronics, Noyes Publicationsm, New Jersey, 1992, pp.1-52.
Google Scholar
[39]
R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of Semiconductor Electrodeposition, Marcel Dekker, New Yourk, (1996).
Google Scholar
[40]
N. Borisenko, S. Zein El Abedin, F. Endres, Electrodeposition of Semiconductors in Ionic Liquids. In F.Endress, D.MacFarlane, A. Abbott (Eds.), Electrodeposition from Ionic Liquids, Wiley, Weinheim, 2008, pp.147-166.
DOI: 10.1002/9783527622917.ch6
Google Scholar
[41]
L.M. Peter, Electrochemical routes to earth-abundant photovoltaics: A minireview, Electrochem. Commun. 50 (2015) 88-92.
DOI: 10.1016/j.elecom.2014.11.012
Google Scholar
[42]
B.D. Falola, I.I. Suni, Low temperature electrochemical deposition of highly active elements, Current Opinion in Solid State and Materials Science 19 (2015) 77-84.
DOI: 10.1016/j.cossms.2014.11.006
Google Scholar
[43]
A.K. Agrawal, A.E. Austin, Electrodeposition of silicon from solutions of silicon salides in aprotic solvents, J. Electrochem. Soc. 128 (1981) 2292-2296.
DOI: 10.1149/1.2127237
Google Scholar
[44]
C.H. Lee, F.A. Kroger, Cathodic deposition of amorphous alloys of silicon, carbon, and fluorine, J. Electrochem. Soc. 129 (1982) 936-942.
DOI: 10.1149/1.2124069
Google Scholar
[45]
J. Gobet, H. Tannenberger, Electrodeposition of silicon from a nonaqueous solvent, J. Electrochem. Soc. 135 (1988) 109-112.
DOI: 10.1149/1.2095532
Google Scholar
[46]
Y. Nishimura, Y. Fukunaka, Electrochemical reduction of silicon chloride in a non-aqueous solvent, Electrochim. Acta 53 (2007) 111-116.
DOI: 10.1016/j.electacta.2007.06.026
Google Scholar
[47]
J.P. Nicholson, Electrodeposition of Silicon from Nonaqueous Solvents, J. Electrochem. Soc. 152, 12 (2005) C795-C802.
DOI: 10.1149/1.2083227
Google Scholar
[48]
T. Munisamy, A.J. Bard, Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth, Electrochim. Acta 55 (2010) 3797-3803.
DOI: 10.1016/j.electacta.2010.01.097
Google Scholar
[49]
M. Bechelany, J. Elias, P. Brodard, J. Michler, L. Philippe, Electrodeposition of amorphous silicon in non-oxygenated organic solvent, Thin solid films 520 (2012) 1895-1901.
DOI: 10.1016/j.tsf.2011.09.026
Google Scholar
[50]
C. Vichery, V. Le Nader, C. Frantz, Y. Zhang, J. Michler and L. Philippe, Stabilization mechanism of electrodeposited silicon thin films, Phys.Chem.Chem.Phys 16 (2014) 22222-22228.
DOI: 10.1039/c4cp02797c
Google Scholar
[51]
S. Link, S. Ivanov, A. Dimitrova, S. Krischok, A. Bund, Electrochemical deposition of silicon from a sulfolane-based electrolyte: Effect of applied potential, Electrochem. Commun. 103 (2019) 7–11.
DOI: 10.1016/j.elecom.2019.04.008
Google Scholar
[52]
Y. Katayama, M. Yokomizo, T. Miura, T. Kishi, Preparation of a novel fluorosilicate salt for electrodeposition of silicon at low temperature, Electrochemistry 69 (2001) 834-836.
DOI: 10.5796/electrochemistry.69.834
Google Scholar
[53]
S.Z. El Abedin, N. Borissenko, F. Endres, Electrodeposition of nanoscale silicon in a room temperature ionic liquid, Electrochem. Commun. 6 (2004) 510-514.
DOI: 10.1016/j.elecom.2004.03.013
Google Scholar
[54]
N. Borissenko, S.Z. El Abedin, F. Endres, n Situ STM Investigation of Gold Reconstruction and of Silicon Electrodeposition on Au(111) in the Room Temperature Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide, J. Phys. Chem. B 110 (2006) 6250-6256.
DOI: 10.1021/jp057337d
Google Scholar
[55]
R. Al-Salman, S.Z. El Abedin, F. Endres, Electrodeposition of Ge, Si and SixGe1−x from an air- and water-stable ionic liquid, Phys. Chem. Chem. Phys. 10 (2008) 4650-4657.
DOI: 10.1039/b806996b
Google Scholar
[56]
A.M. Martineza, K.S. Osena, O.E. Kongsteina, E. Sheridana, A.G. Ulyashina, G.M. Haarberg, Electrodeposition of silicon thin films from ionic liquids, ECS Transactions 25, 27 (2010) 107-118.
DOI: 10.1149/1.3318509
Google Scholar
[57]
J. Park, C.K. Lee, K. Kwon, H. Kim, Electrodeposition of silicon from 1-butyl-3-methyl-pyridinium bis(trifluromethylsulfonyl) imide ionic liquid, Int. J. Electrochem. Sci. 8 (2013) 4206-4214.
Google Scholar
[58]
J. Komadina, T. Akiyoshi, Y. Ishibashi, Y. Fukunaka, T. Homma, Electrochemical quartz crystal microbalance study of Si electrodeposition in ionic liquid, Electrochim. Acta 100 (2013) 236-241.
DOI: 10.1016/j.electacta.2012.07.043
Google Scholar
[59]
G. Pulletikurthi, A. Lahiri, T. Carstens, N. Borisenko, S. Z. El Abedin, F. Endres, Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process, J. Solid State Electrochem. 17 (2013) 2823-2832.
DOI: 10.1007/s10008-013-2185-1
Google Scholar
[60]
J. Zhang, S. Chen, H. Zhang, S. Zhang, X. Yao, Z. Shi, Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature, RSC Adv. 6 (2016) 12061–12067.
DOI: 10.1039/c5ra23085c
Google Scholar
[61]
S. Ivanov, C. Vlaic, A. Bund, I. Efimov, In situ analysis of surface morphology and viscoelastic effects during deposition of thin silicon layers from 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, Electrochim. Acta 219 (2016) 251–257.
DOI: 10.1016/j.electacta.2016.09.156
Google Scholar
[62]
S. Thomas, D. Kowalski, M. Molinari, J. Mallet, Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid, Electrochim. Acta 265 (2018) 166-174.
DOI: 10.1016/j.electacta.2018.01.139
Google Scholar
[63]
A.L. Bieber, L.Massot, M. Gibilaro, L.Cassayre, P.Chamelot, P.Taxil, Fluoroacidity evaluation in molten salts, Electrochim. Acta 56 (2011) 5022-5027.
DOI: 10.1016/j.electacta.2011.03.099
Google Scholar
[64]
A.L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, P. Chamelot, Silicon electrodeposition in molten fluorides, Electrochim. Acta 62 (2012) 282-289.
DOI: 10.1016/j.electacta.2011.12.039
Google Scholar
[65]
S.K. Cho, F.R.F. Fan, A.J. Bard, Electrodeposition of Crystalline and Photoactive Silicon Directly from Silicon Dioxide Nanoparticles in Molten CaCl2, Angew. Chem. Int. Ed. 51 (2012) 12740-12744.
DOI: 10.1002/anie.201206789
Google Scholar
[66]
Y. Sakanaka, T. Goto, Electrodeposition of Si film on Ag substrate in molten LiF–NaF–KF directly dissolving SiO2, Electrochim. Acta 164 (2015) 139-142.
DOI: 10.1016/j.electacta.2014.12.159
Google Scholar
[67]
X. Zou, L. Ji, X. Yang, T. Lim, E.T. Yu, A.J. Bard, Electrochemical formation of a p–n junction on thin film silicon deposited in molten salt, J. Am. Chem. Soc. 139 (2017) 16060-16063.
DOI: 10.1021/jacs.7b09090
Google Scholar
[68]
L. Ji, X. Zou, A.J. Bard, E.T. Yu, Production of low-cost silicon films via molten salt electrodeposition, IEEE (2018) 0325-0327.
DOI: 10.1109/pvsc.2018.8548121
Google Scholar
[69]
K.R. Murali, M. Jayachandran, N. Rangarajan, Review of techniques on growth of GaAs and related compounds, Bull. Electrochem. 3 (1987) 261-265.
Google Scholar
[70]
R. C. DeMattei, D. Elwell and R.S. Feigelson, The synthesis of GaAs by molten salt electrolysis, J. Cryst. Growth 43 (1978) 643-644.
DOI: 10.1016/0022-0248(78)90055-6
Google Scholar
[71]
I.G. Dioum, J Vedel and B Tremillion, Properties of arsenic in molten potassium tetrachlorogallate at 300°C: Formation of gallium arsenide, J. Elelctroanal. Chem & Interf. Chem. 139 (1982) 329-333.
DOI: 10.1002/chin.198304014
Google Scholar
[72]
S. Chandra, N. Khare, Electro-deposited gallium arsenide film: I. Preparation, structural, optical and electrical studies, Semicond. Sci. Technol. 2, 4 (1987) 214-219.
DOI: 10.1088/0268-1242/2/4/003
Google Scholar
[73]
S. Chandra, N. Khare, Electro-deposited gallium arsenide film: II. Electrochemical and photoelectrochemical solar cell studies, Semicond. Sci. Technol. 2, 4 (1987) 220-225.
DOI: 10.1088/0268-1242/2/4/004
Google Scholar
[74]
S. Chandra, N. Khare, H.M. Upadhyaya, Photoelectrochemical solar cells using electrodeposited GaAs and AlSb semiconductor films, Bull. Mater. Sci. 10, 4 (1988) 323-332.
DOI: 10.1007/bf02744303
Google Scholar
[75]
T. Mahalingam, S. Lee, H. Lim, H. Moon, Y.D. Kim, Electrosynthesis and characterization of GaAs in acid solutions by potentiostatic method, Solar Energy Materials & Solar Cells 90 (2006) 2456-2463.
DOI: 10.1016/j.solmat.2006.03.018
Google Scholar
[76]
Y. Gao, A. Han, Y. Lin, , Y. Zhao, J. Zhang, Electrodeposition and characterization of GaAs polycrystalline thin films, J. Appl. Phys. 75, 1 (1994) 549-552.
DOI: 10.1063/1.355837
Google Scholar
[77]
C. Gheorghies, L. Gheorghies, G. Fetecau, Electrodeposition of GaAs thin films from alkaline aqueous solution, J. Optoelectron. Adv. Mater. 9 (2007) 2795-2798.
Google Scholar
[78]
M. Lajnef, R. Chtourou, H. Ezzaouia, Electric characterization of GaAs deposited on porous silicon by electrodeposition technique, Appl. Surf. Sci. 256 (2010) 3058-3062.
DOI: 10.1016/j.apsusc.2009.11.073
Google Scholar
[79]
V.M. Kozlov, B. Bozzini, L.P. Bicelli, Formation of GaAs by annealing of two-layer Ga-As electrodeposits, J. Alloys Comp. 379 (2004) 209-215.
DOI: 10.1016/j.jallcom.2004.01.067
Google Scholar
[80]
S.P. Wicelinski, R.J. Gale, GaAs film formation from low temperature chloroaluminate melts, in: M.-L. Saboungi, D.S. Newman, K. Johnson, D. Inman (Eds.), Fifth International Symposium on Molten Salts, (PV 86-1), the Electrochemical Society Softbound Proceedings Series, 1986, Pennington, NJ, pp.144-152.
DOI: 10.1149/198601.0144pv
Google Scholar
[81]
M.K. Carpenter, M.W. Verbrugge, Electrochemical codeposition of gallium and arsenic from a room temperature chlorogallate melt, J. Electrochem. Soc. 137 (1990) 123-129.
DOI: 10.1149/1.2086346
Google Scholar
[82]
M.W. Verbrugge, M.K. Carpenter, Microelectrode study of gallium deposition from Chlorogallate melts, AIChE J. 36 (1990) 1097-1106.
DOI: 10.1002/aic.690360716
Google Scholar
[83]
E. Fahrenkrug, J. Gu, S. Maldonado, Electrodeposition of crystalline GaAs on liquid gallium electrodes in aqueous electrolytes, J. Am. Chem. Soc. 135, 1 (2013) 330-339.
DOI: 10.1021/ja309476x
Google Scholar
[84]
A.P. Abbott, R.C. Harris, Y.-T. Hsieh, K.S. Ryder, I.W. Sun, Aluminium electrodeposition under ambient conditions, Phys. Chem. Chem. Phys. 16 (2014) 14675–14681.
DOI: 10.1039/c4cp01508h
Google Scholar
[85]
Y. Hou, R. Li, J. Liang, Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions, Appl. Surf. Sci. 434 (2018) 918–921.
DOI: 10.1016/j.apsusc.2017.11.034
Google Scholar
[86]
A. Bakkar, V. Neubert, Electrodeposition of photovoltaic thin films from ionic liquids in ambient atmosphere: Gallium from a chloroaluminate ionic liquid, under publication.
DOI: 10.1016/j.jelechem.2019.113656
Google Scholar