Electrochemical Synthesis of Silicon and Gallium Arsenide Photovoltaic Thin Films: A Critical Review and a Novel Approach

Article Preview

Abstract:

This paper presents, firstly, an overview of results arisen worldwide on semiconductive thin films used in photovoltaic (PV) cells as a function of time and efficiency. Secondly, the paper demonstrates the electrodeposition of silicon and gallium arsenide films suggested for PV cells, with a focus on electrodeposition from ionic liquids. Ionic liquids, due to their wide electrochemical window, are used for the electrodeposition of elements and compounds impossible to be electrodeposited from aqueous solutions. Finally, a new approach, referred to a recent patent by the author, is illustrated to facilitate the practical electrodeposition of semiconductors from ionic liquids that can be suggested for industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

84-96

Citation:

Online since:

August 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://en.wikipedia.org/wiki/Solar_cell, 30.05.(2019).

Google Scholar

[2] F. Endres, Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors, ChemPhysChem 3, 2 (2002) 144-154.

DOI: 10.1002/1439-7641(20020215)3:2<144::aid-cphc144>3.0.co;2-#

Google Scholar

[3] W.-L. Liu, S.-H. Hsieh, W.-J. Chen, P.-I. Wei, and J.-H. Lee, Synthesis of the CuInSe2 thin film for solar cells using the electrodeposition technique and Taguchi method, Int. J. Minerals, Metallurgy & Materials 16, 1 (2009) 101–107.

DOI: 10.1016/s1674-4799(09)60017-0

Google Scholar

[4] R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C. R. Wronski,Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry, Solar Energy Materials and Solar Cells 78 (1-4), (2003) 143-180.

DOI: 10.1016/s0927-0248(02)00436-1

Google Scholar

[5] Information on http://www.nrel.gov by National Renewable Energy Laboratory (NREL), USA, 30.05.(2019).

Google Scholar

[6] M. Ohring, D. Gall, S.P. Baker, Materials Science of Thin Films: Deposition and structure, 3rd edition, Academic Press, (2014).

Google Scholar

[7] S.S. Alias, A.A. Mohamad, Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells, Springer Briefs in Materials, (2014).

Google Scholar

[8] G. Hodes, Chemical solution deposition of semiconductor films, 1st Edition, CRC Press, (2002).

Google Scholar

[9] R. Jayakrishnan, G. Hodes, Non-aqueous electrodeposition of ZnO and CdO films, Thin Solid Films 440 (2003) 19-25.

DOI: 10.1016/s0040-6090(03)00811-3

Google Scholar

[10] D. Lincot, Electrodeposition of semiconductors, Thin Solid Films 478, 1-2 (2005) 40-48.

Google Scholar

[11] T.E. Schlesinger, K. Rajeshwar, N.R.D. Tacconi, Electrodeposition of semiconductors, in M. Schlesinger, M. Paunovic (Eds.), Modern Electroplating, 5th Edition, John Wiley & Sons, Inc., 2010, pp.383-411.

DOI: 10.1002/9780470602638.ch14

Google Scholar

[12] D.O. Flamini, S.B. Saidman. J.B. Bessone, Electrodeposition of gallium onto vitreous carbon, J. Appl. Electrochem. 37 (2007) 467-471.

DOI: 10.1007/s10800-006-9277-x

Google Scholar

[13] A.B. Moghaddam, T.N.J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film, Int. J. Electrochem. Sci. 4 (2009) 247-257.

Google Scholar

[14] K.G. Deepa, N.L. Shruthi, M.A. Sunil, J. Nagaraju, Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics, Thin Solid Films 551 (2014) 1–7.

DOI: 10.1016/j.tsf.2013.10.180

Google Scholar

[15] P.-Y. Chen, Y.-F. Lin, I.-W. Sun, Electrochemistry of gallium in the lewis acidic aluminum chloride‐1‐methyl‐3‐ethylimidazolium chloride room‐temperature molten salt, J. Electrochem. Soc. 146 (1999) 3290-3294.

DOI: 10.1149/1.1392469

Google Scholar

[16] M. Harati, D. Love, W.M. Lau, Z. Ding, Preparation of crystalline zinc oxide films by one-step electrodeposition in Reline, Materials Letters 89 (2012) 339–342.

DOI: 10.1016/j.matlet.2012.08.136

Google Scholar

[17] A. Bakkar, V. Neubert, Verfahren zur galvanischen Abscheidung wenigstens eines Metalls oder Halbleiters Deutsche Patent DE102011055911B3. (2012).

Google Scholar

[18] V. Neubert, A. Bakkar, Process for the galvanic deposition of at least one metal or semiconductor, European Patent EP 2599896 A3. (2014).

Google Scholar

[19] A. Bakkar, V. Neubert, A new method for practical electrodeposition of aluminium from ionic liquids, Electrochem. Commun. 51 (2015) 113-116.

DOI: 10.1016/j.elecom.2014.12.012

Google Scholar

[20] P. Wasserscheid, T. Welton (editors), Ionic Liquids in Synthesis, VCH-Wiley, (2002).

Google Scholar

[21] H. Ohno (editor), Electrochemical Aspects of Ionic Liquids, John Wiley, New Jersey, (2005).

Google Scholar

[22] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chemical Reviews 99 (1999) 2071-2084.

DOI: 10.1021/cr980032t

Google Scholar

[23] K.R. Seddon, Ionic liquids for clean technology, J. Chem. Technol. Biotechnol. 68 (1997) 351-356.

DOI: 10.1002/(sici)1097-4660(199704)68:4<351::aid-jctb613>3.0.co;2-4

Google Scholar

[24] F.H. Hurley, T.P. Wier, The electrodeposition of aluminum from nonaqueous solutions at room temperature, J. Electrochem. Soc. 98 (1951) 207-212.

DOI: 10.1149/1.2778133

Google Scholar

[25] H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, J. Am. Chem. Soc. 97 (1975) 3264-3265.

DOI: 10.1021/ja00844a081

Google Scholar

[26] J. Robinson, R.A. Osteryoung,An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride, J. Am. Chem. Soc. 101 (1979) 323-327.

DOI: 10.1021/ja00496a008

Google Scholar

[27] J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis, Inorg. Chem. 21 (1982) 1263-1264.

DOI: 10.1021/ic00133a078

Google Scholar

[28] C.L. Hussey, Room temperature molten salt systems, Adv. Molten Salt Chem. 5 (1983) 185-230.

Google Scholar

[29] D. Appleby, C.L. Hussey, K.R. Seddon, J.E. Turp, Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes, Nature 323 (1986) 614-616.

DOI: 10.1038/323614a0

Google Scholar

[30] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc. Chem. Comm. (1992) 965-967.

DOI: 10.1039/c39920000965

Google Scholar

[31] F. Endres, Ionic liquids: Promising solvents for electrochemistry, Z. Phys. Chem. 218 (2004) 255-283.

Google Scholar

[32] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-1178.

DOI: 10.1021/ic951325x

Google Scholar

[33] A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB00/01090. (1999).

Google Scholar

[34] A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB01/04300. (2000).

Google Scholar

[35] A.P. Abbot, G. Capper, D.L. Davies, R. Rasheed, V. Tambyrajah, U.K. Patent PCT/GB01/04306. (2000).

Google Scholar

[36] A. Bakkar, V. Neubert, Electrodeposition onto magnesium in air and water stable ionic Liquids: From Corrosion to Successful Plating, Electrochem. Commun. 9 (2007) 2428-2435.

DOI: 10.1016/j.elecom.2007.07.010

Google Scholar

[37] A.P. Abbott, G. Frisch, K.S. Ryder, Electroplating using ionic liquids, Annual Review Matter. Res. 43 (2013) 335-338.

DOI: 10.1146/annurev-matsci-071312-121640

Google Scholar

[38] R.C. DeMattei, R.S. Feigelson, Electrochemical Deposition of Semiconductors. In: McHardy J., Ludeig F. (Eds.) Electrochemistry of Semiconductors and Electronics, Noyes Publicationsm, New Jersey, 1992, pp.1-52.

Google Scholar

[39] R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of Semiconductor Electrodeposition, Marcel Dekker, New Yourk, (1996).

Google Scholar

[40] N. Borisenko, S. Zein El Abedin, F. Endres, Electrodeposition of Semiconductors in Ionic Liquids. In F.Endress, D.MacFarlane, A. Abbott (Eds.), Electrodeposition from Ionic Liquids, Wiley, Weinheim, 2008, pp.147-166.

DOI: 10.1002/9783527622917.ch6

Google Scholar

[41] L.M. Peter, Electrochemical routes to earth-abundant photovoltaics: A minireview, Electrochem. Commun. 50 (2015) 88-92.

DOI: 10.1016/j.elecom.2014.11.012

Google Scholar

[42] B.D. Falola, I.I. Suni, Low temperature electrochemical deposition of highly active elements, Current Opinion in Solid State and Materials Science 19 (2015) 77-84.

DOI: 10.1016/j.cossms.2014.11.006

Google Scholar

[43] A.K. Agrawal, A.E. Austin, Electrodeposition of silicon from solutions of silicon salides in aprotic solvents, J. Electrochem. Soc. 128 (1981) 2292-2296.

DOI: 10.1149/1.2127237

Google Scholar

[44] C.H. Lee, F.A. Kroger, Cathodic deposition of amorphous alloys of silicon, carbon, and fluorine, J. Electrochem. Soc. 129 (1982) 936-942.

DOI: 10.1149/1.2124069

Google Scholar

[45] J. Gobet, H. Tannenberger, Electrodeposition of silicon from a nonaqueous solvent, J. Electrochem. Soc. 135 (1988) 109-112.

DOI: 10.1149/1.2095532

Google Scholar

[46] Y. Nishimura, Y. Fukunaka, Electrochemical reduction of silicon chloride in a non-aqueous solvent, Electrochim. Acta 53 (2007) 111-116.

DOI: 10.1016/j.electacta.2007.06.026

Google Scholar

[47] J.P. Nicholson, Electrodeposition of Silicon from Nonaqueous Solvents, J. Electrochem. Soc. 152, 12 (2005) C795-C802.

DOI: 10.1149/1.2083227

Google Scholar

[48] T. Munisamy, A.J. Bard, Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth, Electrochim. Acta 55 (2010) 3797-3803.

DOI: 10.1016/j.electacta.2010.01.097

Google Scholar

[49] M. Bechelany, J. Elias, P. Brodard, J. Michler, L. Philippe, Electrodeposition of amorphous silicon in non-oxygenated organic solvent, Thin solid films 520 (2012) 1895-1901.

DOI: 10.1016/j.tsf.2011.09.026

Google Scholar

[50] C. Vichery, V. Le Nader, C. Frantz, Y. Zhang, J. Michler and L. Philippe, Stabilization mechanism of electrodeposited silicon thin films, Phys.Chem.Chem.Phys 16 (2014) 22222-22228.

DOI: 10.1039/c4cp02797c

Google Scholar

[51] S. Link, S. Ivanov, A. Dimitrova, S. Krischok, A. Bund, Electrochemical deposition of silicon from a sulfolane-based electrolyte: Effect of applied potential, Electrochem. Commun. 103 (2019) 7–11.

DOI: 10.1016/j.elecom.2019.04.008

Google Scholar

[52] Y. Katayama, M. Yokomizo, T. Miura, T. Kishi, Preparation of a novel fluorosilicate salt for electrodeposition of silicon at low temperature, Electrochemistry 69 (2001) 834-836.

DOI: 10.5796/electrochemistry.69.834

Google Scholar

[53] S.Z. El Abedin, N. Borissenko, F. Endres, Electrodeposition of nanoscale silicon in a room temperature ionic liquid, Electrochem. Commun. 6 (2004) 510-514.

DOI: 10.1016/j.elecom.2004.03.013

Google Scholar

[54] N. Borissenko, S.Z. El Abedin, F. Endres, n Situ STM Investigation of Gold Reconstruction and of Silicon Electrodeposition on Au(111) in the Room Temperature Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide, J. Phys. Chem. B 110 (2006) 6250-6256.

DOI: 10.1021/jp057337d

Google Scholar

[55] R. Al-Salman, S.Z. El Abedin, F. Endres, Electrodeposition of Ge, Si and SixGe1−x from an air- and water-stable ionic liquid, Phys. Chem. Chem. Phys. 10 (2008) 4650-4657.

DOI: 10.1039/b806996b

Google Scholar

[56] A.M. Martineza, K.S. Osena, O.E. Kongsteina, E. Sheridana, A.G. Ulyashina, G.M. Haarberg, Electrodeposition of silicon thin films from ionic liquids, ECS Transactions 25, 27 (2010) 107-118.

DOI: 10.1149/1.3318509

Google Scholar

[57] J. Park, C.K. Lee, K. Kwon, H. Kim, Electrodeposition of silicon from 1-butyl-3-methyl-pyridinium bis(trifluromethylsulfonyl) imide ionic liquid, Int. J. Electrochem. Sci. 8 (2013) 4206-4214.

Google Scholar

[58] J. Komadina, T. Akiyoshi, Y. Ishibashi, Y. Fukunaka, T. Homma, Electrochemical quartz crystal microbalance study of Si electrodeposition in ionic liquid, Electrochim. Acta 100 (2013) 236-241.

DOI: 10.1016/j.electacta.2012.07.043

Google Scholar

[59] G. Pulletikurthi, A. Lahiri, T. Carstens, N. Borisenko, S. Z. El Abedin, F. Endres, Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process, J. Solid State Electrochem. 17 (2013) 2823-2832.

DOI: 10.1007/s10008-013-2185-1

Google Scholar

[60] J. Zhang, S. Chen, H. Zhang, S. Zhang, X. Yao, Z. Shi, Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature, RSC Adv. 6 (2016) 12061–12067.

DOI: 10.1039/c5ra23085c

Google Scholar

[61] S. Ivanov, C. Vlaic, A. Bund, I. Efimov, In situ analysis of surface morphology and viscoelastic effects during deposition of thin silicon layers from 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, Electrochim. Acta 219 (2016) 251–257.

DOI: 10.1016/j.electacta.2016.09.156

Google Scholar

[62] S. Thomas, D. Kowalski, M. Molinari, J. Mallet, Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid, Electrochim. Acta 265 (2018) 166-174.

DOI: 10.1016/j.electacta.2018.01.139

Google Scholar

[63] A.L. Bieber, L.Massot, M. Gibilaro, L.Cassayre, P.Chamelot, P.Taxil, Fluoroacidity evaluation in molten salts, Electrochim. Acta 56 (2011) 5022-5027.

DOI: 10.1016/j.electacta.2011.03.099

Google Scholar

[64] A.L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, P. Chamelot, Silicon electrodeposition in molten fluorides, Electrochim. Acta 62 (2012) 282-289.

DOI: 10.1016/j.electacta.2011.12.039

Google Scholar

[65] S.K. Cho, F.R.F. Fan, A.J. Bard, Electrodeposition of Crystalline and Photoactive Silicon Directly from Silicon Dioxide Nanoparticles in Molten CaCl2, Angew. Chem. Int. Ed. 51 (2012) 12740-12744.

DOI: 10.1002/anie.201206789

Google Scholar

[66] Y. Sakanaka, T. Goto, Electrodeposition of Si film on Ag substrate in molten LiF–NaF–KF directly dissolving SiO2, Electrochim. Acta 164 (2015) 139-142.

DOI: 10.1016/j.electacta.2014.12.159

Google Scholar

[67] X. Zou, L. Ji, X. Yang, T. Lim, E.T. Yu, A.J. Bard, Electrochemical formation of a p–n junction on thin film silicon deposited in molten salt, J. Am. Chem. Soc. 139 (2017) 16060-16063.

DOI: 10.1021/jacs.7b09090

Google Scholar

[68] L. Ji, X. Zou, A.J. Bard, E.T. Yu, Production of low-cost silicon films via molten salt electrodeposition, IEEE (2018) 0325-0327.

DOI: 10.1109/pvsc.2018.8548121

Google Scholar

[69] K.R. Murali, M. Jayachandran, N. Rangarajan, Review of techniques on growth of GaAs and related compounds, Bull. Electrochem. 3 (1987) 261-265.

Google Scholar

[70] R. C. DeMattei, D. Elwell and R.S. Feigelson, The synthesis of GaAs by molten salt electrolysis, J. Cryst. Growth 43 (1978) 643-644.

DOI: 10.1016/0022-0248(78)90055-6

Google Scholar

[71] I.G. Dioum, J Vedel and B Tremillion, Properties of arsenic in molten potassium tetrachlorogallate at 300°C: Formation of gallium arsenide, J. Elelctroanal. Chem & Interf. Chem. 139 (1982) 329-333.

DOI: 10.1002/chin.198304014

Google Scholar

[72] S. Chandra, N. Khare, Electro-deposited gallium arsenide film: I. Preparation, structural, optical and electrical studies, Semicond. Sci. Technol. 2, 4 (1987) 214-219.

DOI: 10.1088/0268-1242/2/4/003

Google Scholar

[73] S. Chandra, N. Khare, Electro-deposited gallium arsenide film: II. Electrochemical and photoelectrochemical solar cell studies, Semicond. Sci. Technol. 2, 4 (1987) 220-225.

DOI: 10.1088/0268-1242/2/4/004

Google Scholar

[74] S. Chandra, N. Khare, H.M. Upadhyaya, Photoelectrochemical solar cells using electrodeposited GaAs and AlSb semiconductor films, Bull. Mater. Sci. 10, 4 (1988) 323-332.

DOI: 10.1007/bf02744303

Google Scholar

[75] T. Mahalingam, S. Lee, H. Lim, H. Moon, Y.D. Kim, Electrosynthesis and characterization of GaAs in acid solutions by potentiostatic method, Solar Energy Materials & Solar Cells 90 (2006) 2456-2463.

DOI: 10.1016/j.solmat.2006.03.018

Google Scholar

[76] Y. Gao, A. Han, Y. Lin, , Y. Zhao, J. Zhang, Electrodeposition and characterization of GaAs polycrystalline thin films, J. Appl. Phys. 75, 1 (1994) 549-552.

DOI: 10.1063/1.355837

Google Scholar

[77] C. Gheorghies, L. Gheorghies, G. Fetecau, Electrodeposition of GaAs thin films from alkaline aqueous solution, J. Optoelectron. Adv. Mater. 9 (2007) 2795-2798.

Google Scholar

[78] M. Lajnef, R. Chtourou, H. Ezzaouia, Electric characterization of GaAs deposited on porous silicon by electrodeposition technique, Appl. Surf. Sci. 256 (2010) 3058-3062.

DOI: 10.1016/j.apsusc.2009.11.073

Google Scholar

[79] V.M. Kozlov, B. Bozzini, L.P. Bicelli, Formation of GaAs by annealing of two-layer Ga-As electrodeposits, J. Alloys Comp. 379 (2004) 209-215.

DOI: 10.1016/j.jallcom.2004.01.067

Google Scholar

[80] S.P. Wicelinski, R.J. Gale, GaAs film formation from low temperature chloroaluminate melts, in: M.-L. Saboungi, D.S. Newman, K. Johnson, D. Inman (Eds.), Fifth International Symposium on Molten Salts, (PV 86-1), the Electrochemical Society Softbound Proceedings Series, 1986, Pennington, NJ, pp.144-152.

DOI: 10.1149/198601.0144pv

Google Scholar

[81] M.K. Carpenter, M.W. Verbrugge, Electrochemical codeposition of gallium and arsenic from a room temperature chlorogallate melt, J. Electrochem. Soc. 137 (1990) 123-129.

DOI: 10.1149/1.2086346

Google Scholar

[82] M.W. Verbrugge, M.K. Carpenter, Microelectrode study of gallium deposition from Chlorogallate melts, AIChE J. 36 (1990) 1097-1106.

DOI: 10.1002/aic.690360716

Google Scholar

[83] E. Fahrenkrug, J. Gu, S. Maldonado, Electrodeposition of crystalline GaAs on liquid gallium electrodes in aqueous electrolytes, J. Am. Chem. Soc. 135, 1 (2013) 330-339.

DOI: 10.1021/ja309476x

Google Scholar

[84] A.P. Abbott, R.C. Harris, Y.-T. Hsieh, K.S. Ryder, I.W. Sun, Aluminium electrodeposition under ambient conditions, Phys. Chem. Chem. Phys. 16 (2014) 14675–14681.

DOI: 10.1039/c4cp01508h

Google Scholar

[85] Y. Hou, R. Li, J. Liang, Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions, Appl. Surf. Sci. 434 (2018) 918–921.

DOI: 10.1016/j.apsusc.2017.11.034

Google Scholar

[86] A. Bakkar, V. Neubert, Electrodeposition of photovoltaic thin films from ionic liquids in ambient atmosphere: Gallium from a chloroaluminate ionic liquid, under publication.

DOI: 10.1016/j.jelechem.2019.113656

Google Scholar