Superconducting and Electrical Resistivity of HTS Bi-2223 Doped by (Cr2O3:SnO)x Nanoparticles

Article Preview

Abstract:

The addition of metal nanoparticles in the Bi-based superconductors has shown the disorder produced by the cations incorporation in the crystal structure affects the TC (Critical temperature) of the system. the addition of new mixture of (Cr2O3: SnO)x on high temperature superconductors HTS Bi1.6Pb0.4 Sr2Ca2Cu3O10+δ (Bi-2223) with ratio 1:1 where x = 0.0, 0.05, 0.10, 0.15 and 0.20 was investigated by solid-state reaction technique was used to prepare superconductor samples. Samples were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FS-EM), Energy Dispersive X-ray (EDX), and electrical resistivity. the results of XRD proved that the structure of 2223 remains the same even with the addition of (Cr2O3: SnO)x nanoparticles. The phase 2223 has the majority even phase Bi-2212 and phase Ca2PbO4 showed a contribution inside structure. As a result of the change physico-chemical properties resistivity of the doped optimized sample x = 0.10 was increasing 2.2 K approximately rather than the undoped one then decreased gradually up to x = 0.20. From resistivity measurement, the TC of 2223 doped with (Cr2O3: SnO)x at x = 0.10 was 113.2 K approximately. The addition of metal oxides in superconductor materials has been considered to be one of the most promising materials for large scale applications in superconducting industry.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

104-113

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Sotelo, M.Mora, M.A. Madre, H.Amaveda, J.C. Diez, L.A. Angurel, M.C. Mayoral, Bol.Soc.Esp.Ceram., p.228–232, (2006).

Google Scholar

[2] L. Shi,Q.Dong,Y.Zhang, Physica C 341-348, (2014).

Google Scholar

[3] Kaya, B.Ozcelik, B.Ozkurt, A.Sotelo, M.A. Madre, J. Mater. Sci. Mater. Electron. P.1580–1586, (2013).

Google Scholar

[4] S.X. Dou, K.H. Song, H.K. Liu, C.C. Sorrell, Physica C 160, p.533–540, (1989).

Google Scholar

[5] M.A. Madre, H.Amaveda, M.Mora, A.Sotelo, L.A. Angure, J.C. Diez, Bol.Soc.Esp.Ceram. p.148–152, (2008).

Google Scholar

[6] S.N. Zhang, C.S.Li, Q.B. Hao, X.B.Ma, T.N.Lu, P.X. Zhang, Supercond. Sci. Technol. 28(2015).

Google Scholar

[7] O. Bilgili, K.Kocabas, J. Mater. Sci.Mater.Electron, p.1700–1708, 26(2015).

Google Scholar

[8] B. Ozkurt, J.Supercond.Novel-Magn., P 2407–2414, 27(2014).

Google Scholar

[9] S. Safran, A. Kılıc, O. Ozturk, J Mater Sci: Mater Electron, 3295–3300, 25 (2016).

Google Scholar

[10] K. Kudo, K. Fujimura, S. Onari, H. Ota , M. Nohara, Physical Review B, 91 (2015).

Google Scholar

[11] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature, 525 (2015).

Google Scholar

[12] N. Darsono, A. Imaduddin, K. Raju , D.H. Yoon, Journal of Superconductivity and Novel Magnetism, 28 (2015).

Google Scholar

[13] R. Asghari, L.C. Arslan, H. Sedghi , H. Naghshar, Journal of Low Temperature Physics,(2017).

Google Scholar

[14] S. Yavuz, O. Bilgili , K. Kocabaş, Journal of Materials Science: Materials in Electronics, (2016).

Google Scholar

[15] M.ME. Barakat , K. Habanjar, Journal of Advanced Ceramics, p.100, 6 (2017).

Google Scholar

[16] S.M. Hosseinpour Mashkani, M. Mhfar, A. Sobhani Nasab, J. Electron. Mater. 3612, (2016).

Google Scholar

[17] A. Sedky, Physica C, 468, p.1041–1046, (2008).

Google Scholar

[18] C. Terziog˘ lu, J. Alloys Compd. 509, 87–93 (2011).

Google Scholar

[19] H. Aydin, O. Cakiroglu, M. Nursoy, C. Terzioglu, Chin. J. Phys.47, 2 (2009).

Google Scholar

[20] M. Nursoy, M. Yılmazlar, C. Terziog˘lu, I. Belenli, J. AlloysCompd. 459, 399–406 (2008).

Google Scholar

[21] O. Ozturk, H.A. Cetinkara, E. Asikuzun, M. Akdogan, M. Yilmazlar,C. Terzioglu, J. Mater. Sci.Mater. Electron. 22,1501–1508 (2011).

DOI: 10.1007/s10854-011-0337-6

Google Scholar

[22] S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab,M. Esmaeili-Zare, J. Mater.Sci.Mater. Electron. 26, 6086–6091, (2015).

DOI: 10.1007/s10854-015-3186-x

Google Scholar

[23] BurcuCevizci, Ozlem, KemalKocabas, J Mater Sci: Mater Electron ,p.13171–13178(2016).

Google Scholar

[24] M.K. Ben Salema, Y. Slimanib, E. Hannachia, F. Ben Azzouza,c, M. Ben Salem, Cryogenics 89 (2018).

Google Scholar

[25] A. Sotelo, B.Ozcelik, H.Amaveda, A.Bruned, Ceramics International p.14276–14284 , 41(2015).

DOI: 10.1016/j.ceramint.2015.07.058

Google Scholar

[26] S. Altin, M. A. Aksan, Y. Balci and M. E. Yakinci, Materials Science and Technology 26p.9-1125 , (2010).

Google Scholar

[27] Ravikant, V.N. Ojha, Ashok Kumar, Vacuum P464–467, 159 (2019).

Google Scholar

[28] Menghan Liao, Yuying Zhu, Jin Zhang, Ruidan Zhong, John Schneeloch, GendaGu, Kaili Jiang, Ding Zhang, Xucun Ma, and Qi-Kun Xue, Nano Letters, 15(2018).

Google Scholar