[1]
K. Isaka, M. Udagawa, Y. Kimura, K. Sei, and M. Ike, Biological wastewater treatment of 1,4-dioxane using polyethylene glycol gel carriers entrapping Afipia sp. D1,, J. Biosci. Bioeng., vol. 121, no. 2, p.203–208, (2016).
DOI: 10.1016/j.jbiosc.2015.06.006
Google Scholar
[2]
K. Isaka, M. Udagawa, Y. Kimura, K. Sei, and M. Ike, Biological 1,4-Dioxane Wastewater Treatment by Immobilized <i>Pseudonocardia</i> sp. D17 on Lower 1,4-Dioxane Concentration,, J. Water Environ. Technol., vol. 14, no. 4, p.289–301, (2016).
DOI: 10.2965/jwet.15-084
Google Scholar
[3]
J. A. Stickney et al., An updated evaluation of the carcinogenic potential of 1,4-dioxane,, Regul. Toxicol. Pharmacol., vol. 38, no. 2, p.183–195, (2003).
Google Scholar
[4]
M. I. Stefan and J. R. Bolton, Mechanism of the degradation of 1, 4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process,, Environ. Sci. Technol., vol. 32, no. 11, p.1588–1595, (1998).
DOI: 10.1021/es970633m
Google Scholar
[5]
D. Patel and V. Kanungo, Phytoremediation Potential of Duckweed (Lemna Minor L: a Tiny Aquatic Plant) in the Removal of Pollutants From Domestic Wastewater With Special Reference To Nutrients,, The Bioscan, vol. 5, no. 3, p.355–358, (2010).
Google Scholar
[6]
N. Ran, M. Agami, and G. Oron, A pilot study of constructed wetlands using duckweed ( Lemna gibba L .) for treatment of domestic primary effluent in Israel,, vol. 38, p.2241–2248, (2004).
DOI: 10.1016/j.watres.2004.01.043
Google Scholar
[7]
K. C. Bal Krishna and C. Polprasert, An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system,, Ecol. Eng., vol. 34, no. 3, p.243–250, (2008).
DOI: 10.1016/j.ecoleng.2008.08.013
Google Scholar
[8]
J. M. Dalu and J. Ndamba, Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe),, Phys. Chem. Earth, vol. 28, no. 20–27, p.1147–1160, (2003).
DOI: 10.1016/j.pce.2003.08.036
Google Scholar
[9]
N. Khellaf and M. Zerdaoui, Growth, photosynthesis and respiratory response to copper in Lemna minor : a potential use of duckweed in biomonitoring,, J. Environ. Heal. Sci. Eng, vol. 7, no. 2, p.299–306, (2010).
Google Scholar
[10]
N. Ozengin and A. Elmaci, Performance of duckweed (Lemna minor L.) on different types of wastewater treatment.,, J. Environ. Biol., vol. 28, no. 2, p.307–314, (2007).
Google Scholar
[11]
N. M. Azeez and A. A. Sabbar, Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery,, J. Appl. Phytotechnology Environ. Sanit., vol. 1, no. 4, p.163–172, (2012).
Google Scholar
[12]
R. A. Mohedano, R. H. R. Costa, F. A. Tavares, and P. Belli Filho, High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds,, Bioresour. Technol., vol. 112, p.98–104, (2012).
DOI: 10.1016/j.biortech.2012.02.083
Google Scholar
[13]
S. A. El-Shafai, F. A. El-Gohary, J. A. J. Verreth, J. W. Schrama, and H. J. Gijzen, Apparent digestibility coefficient of duckweed (Lemna minor), fresh and dry for Nile tilapia (Oreochromis niloticus L.),, Aquac. Res., vol. 35, no. 6, p.574–586, (2004).
DOI: 10.1111/j.1365-2109.2004.01055.x
Google Scholar
[14]
A. Allam, A. Tawfik, A. El-Saadi, and A. Negm, Potentials of using duckweed (Lemna gibba) for treatment of drainage water for reuse in irrigation purposes,, Desalin. Water Treat., vol. 57, no. 1, p.459–467, (2016).
DOI: 10.1080/19443994.2014.966760
Google Scholar
[15]
A. Allam, A. Tawfik, A. Negm, C. Yoshimura, and A. Fleifle, Treatment of Drainage Water Containing Pharmaceuticals Using Duckweed (Lemna gibba),, Energy Procedia, vol. 74, p.1–8, (2015).
DOI: 10.1016/j.egypro.2015.07.734
Google Scholar
[16]
Water Environment and APHA, Standard Methods for the Examination of Water and Wastewater Part 1000 Standard Methods for the Examination of Water and Wastewater,, (1999).
Google Scholar
[17]
C. Paper, Removal of heavy metals ions from drainage water using duckweed-based treatment ponds,, no. April, (2015).
Google Scholar