Pyrolysis of Sugarcane Bagasse: The Effects of Process Parameters on the Product Yields

Article Preview

Abstract:

The objective of the present work is to investigate the pyrolysis of sugarcane bagasse in a semi-batch reactor and study the effect of process parameters of pyrolysis on the products yield to determine optimum parameters for maximum bio-oil production. Parameters of the pyrolysis process such as temperature, particle size of sugarcane bagasse and flow rate of nitrogen (N2) have been varied as 350–600 °C, 0.25–2 mm and 100–500 cm3/min, respectively. According to the various pyrolysis conditions applied in the experimental studies, the obtained oil, char and gas yields ranged between 38 and 45 wt%, 24 and 36 wt%, and 23 and 37 wt%, respectively. The maximum pyrolysis bio-oil yield of 45 wt% was achieved at temperature of 500 °C, particle size of 0.5 -1 mm with nitrogen(N2) flow rate of 200 cm3/min. Based on the results captured under this study's pyrolysis conditions, temperature is considered to be the most important parameter for product distribution. As the increases of the pyrolysis temperature the bio-char yield decreased and increase of gas yield. The bio-oil yield increases with increasing the temperature, reaches a maximum value at about 500 °C and reduces thereafter at higher temperature is expect due to secondary cracking reactions of the volatiles, which results produce a higher gaseous yield.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

159-167

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Taher and M. Nasr, Agricultural Wastes-To-Green Energy in Egypt vol. 8, (2018).

Google Scholar

[2] A. Elsayed and M. A. Elbasset, Antecedents of buyer opportunism in the Egyptian sugar industry: an empirical study between sugar millers and sugarcane growers in upper Egypt,, Høgskolen i Molde-Vitenskapelig høgskole i logistikk, (2017).

Google Scholar

[3] A.-R. F. Drummond and I. W. Drummond, Pyrolysis of Sugar Cane Bagasse in a Wire-Mesh Reactor,, Industrial & Engineering Chemistry Research, vol. 35, pp.1263-1268, 1996/01/01 (1996).

DOI: 10.1021/ie9503914

Google Scholar

[4] A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass,, Organic Geochemistry, vol. 30, pp.1479-1493, 1999/12/01/ (1999).

DOI: 10.1016/s0146-6380(99)00120-5

Google Scholar

[5] S. Şensöz, İ. Demiral, and H. Ferdi Gerçel, Olive bagasse (Olea europea L.) pyrolysis,, Bioresource Technology, vol. 97, pp.429-436, 2006/02/01/ (2006).

DOI: 10.1016/j.biortech.2005.03.007

Google Scholar

[6] İ. Demiral and S. Şensöz, Fixed-Bed Pyrolysis of Hazelnut (Corylus Avellana L.) Bagasse: Influence of Pyrolysis Parameters on Product Yields,, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 28, pp.1149-1158, 2006/09/01 (2006).

DOI: 10.1080/009083190966126

Google Scholar

[7] İ. Demiral and E. A. Ayan, Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product,, Bioresource Technology, vol. 102, pp.3946-3951, 2011/02/01/ (2011).

DOI: 10.1016/j.biortech.2010.11.077

Google Scholar

[8] N. Bhattacharjee and A. B. Biswas, Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization,, Journal of Environmental Chemical Engineering, vol. 7, p.102903, 2019/02/01/ (2019).

DOI: 10.1016/j.jece.2019.102903

Google Scholar

[9] Q. Sohaib, A. Muhammad, and M. Younas, Fast pyrolysis of sugarcane bagasse: Effect of pyrolysis conditions on final product distribution and properties,, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 39, pp.184-190, 2017/01/17 (2017).

DOI: 10.1080/15567036.2016.1212292

Google Scholar

[10] A. K. Varma and P. Mondal, Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products,, Industrial Crops and Products, vol. 95, pp.704-717, 2017/01/01/ (2017).

DOI: 10.1016/j.indcrop.2016.11.039

Google Scholar

[11] M. Asadullah, M. A. Rahman, M. M. Ali, M. S. Rahman, M. A. Motin, M. B. Sultan, et al., Production of bio-oil from fixed bed pyrolysis of bagasse,, Fuel, vol. 86, pp.2514-2520, 2007/11/01/ (2007).

DOI: 10.1016/j.fuel.2007.02.007

Google Scholar

[12] M. F. Parihar, M. Kamil, H. B. Goyal, A. K. Gupta, and A. K. Bhatnagar, An Experimental Study on Pyrolysis of Biomass,, Process Safety and Environmental Protection, vol. 85, pp.458-465, 2007/01/01/ (2007).

DOI: 10.1205/psep07035

Google Scholar

[13] Y. Kar, Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor,, Bioresource Technology, vol. 102, pp.9800-9805, 2011/10/01/ (2011).

DOI: 10.1016/j.biortech.2011.08.022

Google Scholar

[14] P. A. Horne and P. T. Williams, Influence of temperature on the products from the flash pyrolysis of biomass,, Fuel, vol. 75, pp.1051-1059, 1996/07/01/ (1996).

DOI: 10.1016/0016-2361(96)00081-6

Google Scholar

[15] W. N. R. W. Isahak, M. W. M. Hisham, M. A. Yarmo, and T.-y. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method,, Renewable and Sustainable Energy Reviews, vol. 16, pp.5910-5923, 2012/10/01/ (2012).

DOI: 10.1016/j.rser.2012.05.039

Google Scholar

[16] H. Haykiri-Acma, The role of particle size in the non-isothermal pyrolysis of hazelnut shell,, Journal of Analytical and Applied Pyrolysis, vol. 75, pp.211-216, 2006/03/01/ (2006).

DOI: 10.1016/j.jaap.2005.06.002

Google Scholar

[17] A. K. Varma, L. S. Thakur, R. Shankar, and P. Mondal, Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products,, Waste Management, vol. 89, pp.224-235, 2019/04/15/ (2019).

DOI: 10.1016/j.wasman.2019.04.016

Google Scholar

[18] B. B. Uzun, A. E. Pütün, and E. Pütün, Fast pyrolysis of soybean cake: Product yields and compositions,, Bioresource Technology, vol. 97, pp.569-576, 2006/03/01/ (2006).

DOI: 10.1016/j.biortech.2005.03.026

Google Scholar

[19] R. Saikia, R. S. Chutia, R. Kataki, and K. K. Pant, Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials,, Bioresource Technology, vol. 188, pp.265-272, 2015/07/01/ (2015).

DOI: 10.1016/j.biortech.2015.01.089

Google Scholar

[20] U. Moralı and S. Şensöz, Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: Characterization of bio-oil and bio-char,, Fuel, vol. 150, pp.672-678, 2015/06/15/ (2015).

DOI: 10.1016/j.fuel.2015.02.095

Google Scholar

[21] S. Vecino Mantilla, P. Gauthier-Maradei, P. Álvarez Gil, and S. Tarazona Cárdenas, Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization,, Journal of Analytical and Applied Pyrolysis, vol. 108, pp.284-294, 2014/07/01/ (2014).

DOI: 10.1016/j.jaap.2014.04.003

Google Scholar