Experimental Study on the Desalination System Using Humidification-Dehumidification Technology

Article Preview

Abstract:

In this paper, an experimental work studies the principal operating parameters of a proposed desalination process using air humidification-dehumidification method. The major objective of this work is to determine the humid air behavior through the desalination system. Different operating conditions including the effect of the water temperature at the entry to the humidifier, the ratio of the mass of water to the air, the air/water flow rate, and cooling water at entry the dehumidifier on the desalination performance were studied. The results show that the freshwater increases with increasing the water temperature at the inlet of the humidifier, the ratio of the mass of water to air, and cooling water flow rate in the dehumidifier. Cooling water outlet temperature at the condenser increases with increasing the water temperature at humidifier inlet. Also, it decreases as increasing cooling water flow rate while the ratio of the mass of water to air achieves the highest productivity and gained output ratio (GOR). The achieved mass ratio (MR) is 4.5 and the mass flow rate of air is 0.8 kg/min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

177-185

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hermosillo, C. A. Arancibia-bulnes, and C. A. Estrada, Water desalination by air humidification : Mathematical model and experimental study,, Sol. Energy, vol. 86, no. 4, p.1070–1076, (2012).

DOI: 10.1016/j.solener.2011.09.016

Google Scholar

[2] H. Hassan, M.S. Ahmed, M. Fathy, Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC), Renewable energy, vol. 135, pp.36-147. (2019).

DOI: 10.1016/j.renene.2018.11.112

Google Scholar

[3] M.S. Yousef, H. Hassan, M. Ahmed, S. Ookawara, Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions, Energy Procedia, vol. 141, pp.18-23, (2017).

DOI: 10.1016/j.egypro.2017.11.005

Google Scholar

[4] M.S. Yousef, H. Hassan, H. Sekiguchi, Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials, Applied Thermal Engineering, vol. 150, pp.30-41, (2019).

DOI: 10.1016/j.applthermaleng.2019.01.005

Google Scholar

[5] A.R.A. Elbar, H. Hassan, Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration, Solar Energy, vol. 184, pp.584-593,(2019).

DOI: 10.1016/j.solener.2019.04.042

Google Scholar

[6] S. A. Kalogirou, Seawater desalination using renewable energy sources,, Prog. Energy Combust. Sci., vol. 31, no. 3, p.242–281, (2005).

DOI: 10.1016/j.pecs.2005.03.001

Google Scholar

[7] S. Kalogirou, Use of parabolic trough solar energy collectors for sea-water desalination,, Appl. Energy, vol. 60, p.65–88, (1998).

DOI: 10.1016/s0306-2619(98)00018-x

Google Scholar

[8] A.R.A. Elbar, M.S. Yousef, H. Hassan, Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel, Journal of Cleaner Production, vol. 233, no.1,pp.665-680, (2019).

DOI: 10.1016/j.jclepro.2019.06.111

Google Scholar

[9] M. Fathy, H. Hassan, M.S. Ahmed, Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance, Solar Energy, vol.163, pp.54-61, (2018).

DOI: 10.1016/j.solener.2018.01.043

Google Scholar

[10] N. Misdan, W. J. Lau, and A. F. Ismail, Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects,, Desalination, vol. 287, p.228–237, (2012).

DOI: 10.1016/j.desal.2011.11.001

Google Scholar

[11] A. E. Kabeel, M. H. Hamed, Z. M. Omara, and S. W. Sharshir, Water desalination using a humidification-dehumidification technique-a detailed review,, Nat. Resour., vol. 4, no. 03, p.286, (2013).

DOI: 10.4236/nr.2013.43036

Google Scholar

[12] D. U. Lawal, S. M. Zubair, and M. A. Antar, Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP),, Desalination, vol. 443, p.11–25, (2018).

DOI: 10.1016/j.desal.2018.05.011

Google Scholar

[13] H. A. Ahmed, I. M. Ismail, W. F. Saleh, and M. Ahmed, Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier,, Desalination, vol. 410, p.19–29, (2017).

DOI: 10.1016/j.desal.2017.01.036

Google Scholar

[14] D. Lawal, M. Antar, A. Khalifa, S. Zubair, and F. Al-Sulaiman, Humidification-dehumidification desalination system operated by a heat pump,, Energy Convers. Manag., vol. 161, p.128–140, (2018).

DOI: 10.1016/j.enconman.2018.01.067

Google Scholar

[15] Y. Zhao, H. Zheng, S. Liang, N. Zhang, and X. long Ma, Experimental research on four-stage cross flow humidification dehumidification (HDH) solar desalination system with direct contact dehumidifiers,, Desalination, vol. 467, p.147–157, (2019).

DOI: 10.1016/j.desal.2019.06.003

Google Scholar

[16] J. C. Ho and N. E. Wijeysundera, Study of a compact spiral-coil cooling and dehumidifying heat exchanger,, Appl. Therm. Eng., vol. 16, no. 10, p.777–790, (1996).

DOI: 10.1016/1359-4311(96)00002-6

Google Scholar

[17] G. P. Narayan, M. H. Sharqawy, J. H. Lienhard V, and S. M. Zubair, Thermodynamic analysis of humidification dehumidification desalination cycles,, Desalin. water Treat., vol. 16, no. 1–3, p.339–353, (2010).

DOI: 10.5004/dwt.2010.1078

Google Scholar

[18] H. Hassan, S. Abo-Elfadl, Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate, Renewable energy, vol. 116, pp.728-740,(2018).

DOI: 10.1016/j.renene.2017.09.047

Google Scholar

[19] M.S. Yousef, H. Hassan, Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study, Solar Energy, vol. 182, pp.316-331, (2019).

DOI: 10.1016/j.solener.2019.02.042

Google Scholar

[20] A. E. Kabeel, M. H. Hamed, Z. M. Omara, and S. W. Sharshir, Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review,, Nat. Resour., vol. 04, no. 03, p.286–305, (2013).

DOI: 10.4236/nr.2013.43036

Google Scholar

[21] M.A. Said, H. Hassan, An experimental work on the effect of using new technique of thermal energy storage of phase change material on the performance of air conditioning unit, Energy and Buildings, vol. 173, pp.353-364, (2018).

DOI: 10.1016/j.enbuild.2018.05.041

Google Scholar

[22] H. Hassan, M. S. Ahmed, and M. Fathy, Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC),, Renew. energy, vol. 135, p.136–147, (2019).

DOI: 10.1016/j.renene.2018.11.112

Google Scholar

[23] M.S. Yousef, H. Hassan, An experimental work on the performance of single slope solar still incorporated with latent heat storage system in hot climate conditions, Journal of cleaner production, vol. 209, pp.1396-1410, (2019).

DOI: 10.1016/j.jclepro.2018.11.120

Google Scholar