[1]
J. Hermosillo, C. A. Arancibia-bulnes, and C. A. Estrada, Water desalination by air humidification : Mathematical model and experimental study,, Sol. Energy, vol. 86, no. 4, p.1070–1076, (2012).
DOI: 10.1016/j.solener.2011.09.016
Google Scholar
[2]
H. Hassan, M.S. Ahmed, M. Fathy, Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC), Renewable energy, vol. 135, pp.36-147. (2019).
DOI: 10.1016/j.renene.2018.11.112
Google Scholar
[3]
M.S. Yousef, H. Hassan, M. Ahmed, S. Ookawara, Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions, Energy Procedia, vol. 141, pp.18-23, (2017).
DOI: 10.1016/j.egypro.2017.11.005
Google Scholar
[4]
M.S. Yousef, H. Hassan, H. Sekiguchi, Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials, Applied Thermal Engineering, vol. 150, pp.30-41, (2019).
DOI: 10.1016/j.applthermaleng.2019.01.005
Google Scholar
[5]
A.R.A. Elbar, H. Hassan, Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration, Solar Energy, vol. 184, pp.584-593,(2019).
DOI: 10.1016/j.solener.2019.04.042
Google Scholar
[6]
S. A. Kalogirou, Seawater desalination using renewable energy sources,, Prog. Energy Combust. Sci., vol. 31, no. 3, p.242–281, (2005).
DOI: 10.1016/j.pecs.2005.03.001
Google Scholar
[7]
S. Kalogirou, Use of parabolic trough solar energy collectors for sea-water desalination,, Appl. Energy, vol. 60, p.65–88, (1998).
DOI: 10.1016/s0306-2619(98)00018-x
Google Scholar
[8]
A.R.A. Elbar, M.S. Yousef, H. Hassan, Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel, Journal of Cleaner Production, vol. 233, no.1,pp.665-680, (2019).
DOI: 10.1016/j.jclepro.2019.06.111
Google Scholar
[9]
M. Fathy, H. Hassan, M.S. Ahmed, Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance, Solar Energy, vol.163, pp.54-61, (2018).
DOI: 10.1016/j.solener.2018.01.043
Google Scholar
[10]
N. Misdan, W. J. Lau, and A. F. Ismail, Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects,, Desalination, vol. 287, p.228–237, (2012).
DOI: 10.1016/j.desal.2011.11.001
Google Scholar
[11]
A. E. Kabeel, M. H. Hamed, Z. M. Omara, and S. W. Sharshir, Water desalination using a humidification-dehumidification technique-a detailed review,, Nat. Resour., vol. 4, no. 03, p.286, (2013).
DOI: 10.4236/nr.2013.43036
Google Scholar
[12]
D. U. Lawal, S. M. Zubair, and M. A. Antar, Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP),, Desalination, vol. 443, p.11–25, (2018).
DOI: 10.1016/j.desal.2018.05.011
Google Scholar
[13]
H. A. Ahmed, I. M. Ismail, W. F. Saleh, and M. Ahmed, Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier,, Desalination, vol. 410, p.19–29, (2017).
DOI: 10.1016/j.desal.2017.01.036
Google Scholar
[14]
D. Lawal, M. Antar, A. Khalifa, S. Zubair, and F. Al-Sulaiman, Humidification-dehumidification desalination system operated by a heat pump,, Energy Convers. Manag., vol. 161, p.128–140, (2018).
DOI: 10.1016/j.enconman.2018.01.067
Google Scholar
[15]
Y. Zhao, H. Zheng, S. Liang, N. Zhang, and X. long Ma, Experimental research on four-stage cross flow humidification dehumidification (HDH) solar desalination system with direct contact dehumidifiers,, Desalination, vol. 467, p.147–157, (2019).
DOI: 10.1016/j.desal.2019.06.003
Google Scholar
[16]
J. C. Ho and N. E. Wijeysundera, Study of a compact spiral-coil cooling and dehumidifying heat exchanger,, Appl. Therm. Eng., vol. 16, no. 10, p.777–790, (1996).
DOI: 10.1016/1359-4311(96)00002-6
Google Scholar
[17]
G. P. Narayan, M. H. Sharqawy, J. H. Lienhard V, and S. M. Zubair, Thermodynamic analysis of humidification dehumidification desalination cycles,, Desalin. water Treat., vol. 16, no. 1–3, p.339–353, (2010).
DOI: 10.5004/dwt.2010.1078
Google Scholar
[18]
H. Hassan, S. Abo-Elfadl, Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate, Renewable energy, vol. 116, pp.728-740,(2018).
DOI: 10.1016/j.renene.2017.09.047
Google Scholar
[19]
M.S. Yousef, H. Hassan, Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study, Solar Energy, vol. 182, pp.316-331, (2019).
DOI: 10.1016/j.solener.2019.02.042
Google Scholar
[20]
A. E. Kabeel, M. H. Hamed, Z. M. Omara, and S. W. Sharshir, Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review,, Nat. Resour., vol. 04, no. 03, p.286–305, (2013).
DOI: 10.4236/nr.2013.43036
Google Scholar
[21]
M.A. Said, H. Hassan, An experimental work on the effect of using new technique of thermal energy storage of phase change material on the performance of air conditioning unit, Energy and Buildings, vol. 173, pp.353-364, (2018).
DOI: 10.1016/j.enbuild.2018.05.041
Google Scholar
[22]
H. Hassan, M. S. Ahmed, and M. Fathy, Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC),, Renew. energy, vol. 135, p.136–147, (2019).
DOI: 10.1016/j.renene.2018.11.112
Google Scholar
[23]
M.S. Yousef, H. Hassan, An experimental work on the performance of single slope solar still incorporated with latent heat storage system in hot climate conditions, Journal of cleaner production, vol. 209, pp.1396-1410, (2019).
DOI: 10.1016/j.jclepro.2018.11.120
Google Scholar