Towards Potential Removal of Malachite Green from Wastewater: Adsorption Process Optimization and Prediction

Article Preview

Abstract:

Granular activated carbon (GAC) is utilized as an adsorbent for the malachite green (MG) dye removal from aqueous solutions. The GAC was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) to realize the GAC chemical and physical features effects on the adsorption efficiency. Batch adsorption processes were carried out with different variables like pH, GAC dose, initial MG concentration and time. The response surface methodology (RSM) was used to design the experiments, model the adsorption process, optimize the operating conditions and predict the response. A 24 full factorial central composite design (CCD) was performed for the experimental design and the analysis of the results. Analysis of variance (ANOVA) was employed to determine the significance of the factors and explore the interaction between the various experimental parameters. An empirical model was derived to correlate the experimental results and predict the behavior of the GAC for the adsorption process. The model showed a good agreement with the experimental results of R2 = 0.9968 and evidenced that the optimum operating parameters are pH 10, 2 g GAC/L, 200 mg/L of MG initial concentration and 113 min adsorption time for complete removal of MG.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

213-221

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ahmad, W. Harris and O. Seng: J. Technnol. Vol. 36 (2002), pp.31-44.

Google Scholar

[2] S. Sekar, M. Suriyanarayana, V. Ranganathan, D.R. MacFarlane and A.B. Mandal: Environ. Sci. Technol. Vol. 46 (2012), pp.4902-4908.

Google Scholar

[3] S. Dolores, R. Soledad and P.B. Dolores: Anal. Chim. Acta. Vol. 460 (2002), pp.13-22.

Google Scholar

[4] R. Anantharaj and B. Tamal: Can. J. Chem. Eng. Vol. 91 (2013), pp.245-256.

Google Scholar

[5] B.H. Hameed and M.I. El-Khaiary: J. Hazard.Mater. Vol. 154 (2008), pp.237-244.

Google Scholar

[6] L. Papinutti, N. Mouso and F. Forchiassin: Enzyme Microb. Technol. Vol. 39 (2006), pp.848-853.

Google Scholar

[7] S. Srivastava, R. Sinha and D. Roy: Aquat. Toxicol. Vol. 66 (2004), pp.319-329.

Google Scholar

[8] M.A. Hassaan, M.R. ElKatory, R.M. Ali and A. El Nemr: Egypt. J. Chem.

Google Scholar

[9] A. El Nemr, M.A. Hassaan and F.F. Madkour: Environ. Process. Vol. 5 (2018), pp.95-113.

Google Scholar

[10] M.A. Hassaan, A. El Nemr and F.F. Madkour: Egypt. J. Aquat. Res. Vol. 43 (2017), pp.11-19.

Google Scholar

[11] M.A. Hassaan, A. El Nemr and F.F. Madkour: Egypt. J. Aquat. Res. Vol. 43 (2017), pp.1-9.

Google Scholar

[12] Y.E. Khater, R.M. Ali, G.F. Malash and A.A. Zaatout.  J. sci. eng. res. Vol. 8 (2017), pp.1397-1404.

Google Scholar

[13] A. Ewecharoena, P. Thiravetyan, E. Wendel and H. Berlagnolli: J. Hazard. Mater. Vol.171 (2009), p.335–339.

Google Scholar

[14] C. Pires, A. Marques, A. Guerreiro, N. Magan and P. Castro: J. Hazard. Mater. Vol. 191 (2011), p.277–286.

Google Scholar

[15] W.S. Wan Ngah, C.S. Endud and R. Mayanar: React. Funct. Polym. Vol. 50 (2002), p.181–190.

Google Scholar

[16] T. Vengris, R. Binkiene and A. Sveikauskaite: Appl. Clay Sci. Vol. 18 (2001), p.183–190.

Google Scholar

[17] P. Wang, M. Du, H. Zhu, S. Bao, T. Yang and M. Zou: J. Hazard. Mater. Vol. 286 (2015), p.533–544.

Google Scholar

[18] H.A. Essawy and H. Ibrahim: React. Funct. Polym. Vol. 61 (2004), p.421–432.

Google Scholar

[19] W.Z. Wang, G. Wang, X.S. Wang, Y. Zhan, Y. Liu and C.L. Zheng: Adv. Mater. Vol. 14 (2002), p.67–69.

Google Scholar

[20] J.K. Ratana, M. Kaura and B. Adiraju: Materials Today Proceedings. Vol. 5 (2018), p.3334–3345.

Google Scholar

[21] S. Hashemia, K. Salari and Z.A. Yazdi: J. Ind. Eng. Chem. Vol. 20 (2014), p.1892–(1900).

Google Scholar

[22] H. Demiral and G. Güngor: J. Clean. Prod. Vol. 124 (2016), pp.103-113.

Google Scholar

[23] M. Danish, T. Ahmad, W.N.A.W. Nadhari, M. Ahmad, W.A. Khanday, L. Ziyang and Z. Pin: Appl. Water Sci. Vol. 8-9 (2018), pp.8-19.

DOI: 10.1007/s13201-018-0644-7

Google Scholar

[24] J. Lee, L. Ye, W.O. Landen and R.R. Eitenmillcr: J. Food Compos. Anal. Vol. 13 (2000), pp.45-57.

Google Scholar

[25] A. Ozer, G. Gurbuz A. Calimli and B.K. Korbahti: Chem. Eng. J. Vol. 146 (2009), p.377–387.

Google Scholar

[26] R.M. Ali, H.A. Farag, N.A. Amin and I.H. Farag: Jokull Vol. 65 (2015), pp.233-244.

Google Scholar

[27] D. Pathania, S. Sharma and P. Singh: Arab. J. Chem. Vol. 10 (2017), S1445-S1451.

Google Scholar

[28] M.R. El-Aassar, M.F. El-Kady, H.S. Hassan and S.S. Al-Deyab: J. Taiwan Inst. Chem. Eng. Vol. 58 (2016), p.274–282.

DOI: 10.1016/j.jtice.2015.05.042

Google Scholar

[29] R.M. Ali, H.A. Hamad, M.M. Hussein and G.F. Malash: Ecol. Eng. Vol. 91 (2016), p.317–332.

Google Scholar

[30] R.M. Ali, M.M. Abd El Latif and H.A. Farag: Am. J. Appl. Chem. Vol. 3 (2015), p.38–45.

Google Scholar

[31] D.A. Kamel, H.A. Farag, N.K. Amin, A.A. Zatout, R.M. Ali: Ind. Crop. Prod. Vol. 111 (2018), pp.407-413.

Google Scholar

[32] E.A. Soliman, M.R. Elkatory, A.I. Hashem, H.S. Ibrahim: Fuel 211 (2018) 535–547.

Google Scholar

[33] W.C. Conley: Computer Optimization Techniques, Petrocelli Books, Princeton, (1984).

Google Scholar

[34] D.C. Montgomery: Design and Analysis of Experiments, 3rd ed., Wiley, New York,(1991).

Google Scholar

[35] J. Segurola, N.S. Allen, M. Edge and A.M. Mahon: Prog. Org. Coat. Vol. 37 (1999), p.23–37.

Google Scholar

[36] A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi and A.A. Bazrafshan: Spectrochim. Acta. A Mol. Biomol. Spectrosc. Vol. 146 (2015), 203-212.

Google Scholar

[37] R.M. Ali, M. El Katory, M. Hassaan, K. Amer, A. El Geiheini: Egypt. J. Chem.

Google Scholar

[38] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei and A. Asghari: J. Ind. Eng. Chem. Vol. 21 (2015), p.459–469.

Google Scholar

[39] R.H. Myers and D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons Inc, (1995).

Google Scholar