A Study on Bio-Diesel and Jet Fuel Blending for the Production of Renewable Aviation Fuel

Article Preview

Abstract:

Aviation industry is considered one of the contributors to atmospheric CO2emissions. It is forced to cut off carbon dioxide emission starting 2020. Current trends in bio-jet production involve mega projects with million dollars of investments. In this study, bio-jet fuel production by blending bio-diesel with traditional jet fuel at different concentrations of bio-diesel (5, 10, 15, 20 vol. %) was investigated. This blending technique will reduce bio-jet production cost compared to other bio-jet techniques. Bio-diesel was originally produced by the transesterification of non-edible vegetable oil (renewable sources), so, its blend with jet fuel will has a reduced carbon foot print. The blend was tested to ensure that the end product will meet the ASTM D1655 international specifications for Jet A-1 and Jet A and can be used in aircrafts.Available data on biodiesel blending with jet fuel in the literature is not consistent, there are many contradictory results. Hence, more investigations are required using locally available feedstocks. The main physicochemical properties for Jet A-1 and Jet A according to ASTM D1655 were tested to check if the blend will be compatible with existing turbojet engine systems. Different tests were conducted; vacuum distillation, smoke point, kinematic viscosity, density, flash point, total acidity and freezing point. In addition, heating value of the blend was calculated. The result was then compared with calculated value using blending indices available in the literature. Blending indices were able to predict the laboratory measured specifications for the studied blends.It was found that only 5% bio-diesel- 95% jet fuel blend (B5) meets ASTM standard for Jet A. Hence, biodiesel can be safely used as a blend with fossil-based jet for a concentration of up to 5% without any change in the ASTM specifications. Freezing point is the most important constrain for this blending technique. Higher blends of biodiesel will cause the bio-jet blend to fail ASTM specifications. In general, blending technique will reduce the cost impact that may have been incurred due to change in infrastructure when using other production techniques.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

231-244

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] National Oceanic and Atmospheric Administration (NOAA), ESRL data. Trends in atmospheric carbon dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html, (2019).

Google Scholar

[2] T. Oda, S. Maksyutov, A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys. 11 (2011) 543-556.

DOI: 10.5194/acp-11-543-2011

Google Scholar

[3] IPCC special report, Aviation and the global atmosphere, A special report of IPCC working groups I and III, (1999) Intergovernmental Panel on Climate Change.

DOI: 10.1017/cbo9781139151153.020

Google Scholar

[4] Aviation benefits beyond borders, Air transport action group (ATAG), October (2018).

Google Scholar

[5] M. Kousoulidou, L. Lonza, Biofuels in aviation: Fuel demand and CO2 emissions evolution in europe toward 2030, Transportation Research Part D: Transport and Environment. 46 (2016) 166-181.

DOI: 10.1016/j.trd.2016.03.018

Google Scholar

[6] International Air Transport Association (IATA) Annual Review, (2018).

Google Scholar

[7] J. Yang, Z. Xin, K. Corscadden, H. Niu, An overview on performance characteristics of bio-jet fuels, Fuel. 237 (2019) 916-936.

DOI: 10.1016/j.fuel.2018.10.079

Google Scholar

[8] C. Gutiérrez-Antonio, F. I. Gómez-Castro, J. A. de Lira-Flores, S. Hernández, A review on the production processes of renewable jet fuel, Renewable and Sustainable Energy Reviews. 79 (2017) 709-729.

DOI: 10.1016/j.rser.2017.05.108

Google Scholar

[9] R. Mawhood, E. Gazis, S. de Jong, R. Hoefnagels, R. Slade, Production pathways for renewable jet fuel: A review of commercialization status and future prospects, Biofuels, Bioproducts and Biorefining. 10 (2016) 462-484.

DOI: 10.1002/bbb.1644

Google Scholar

[10] T. Radich, The flight paths for biojet fuel, Washington, DC20585 (2015).

Google Scholar

[11] C. Gutiérrez-Antonio, F. I. Gómez-Castro, J. G. Segovia-Hernández, A. Briones-Ramírez, Simulation and optimization of a biojet fuel production process, Computer Aided Chemical Engineering. 32 (2013) 13-18.

DOI: 10.1016/b978-0-444-63234-0.50003-8

Google Scholar

[12] G. W. Diederichs, M. A. Mandegari, S. Farzad, J. F. Görgens, Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice, Bioresource Technology. 216 (2016) 331-339.

DOI: 10.1016/j.biortech.2016.05.090

Google Scholar

[13] M. Y. Kim, J. K. Kim, M. E. Lee, S. Lee, M. Choi, Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps, ACS catalysis. 7(9) (2017) 6256-6267.

DOI: 10.1021/acscatal.7b01326

Google Scholar

[14] W. C. Wang, L. Tao, J. Markham, Y. Zhang, E. Tan, L. Batan, E. Warner, M. Biddy, Review of biojet fuel conversion technologies, No. NREL/TP-5100-66291, National Renewable Energy Lab. (NREL), Golden, CO (United States), (2016).

DOI: 10.2172/1278318

Google Scholar

[15] E. Nygren, K. Aleklett, M. Höök, Aviation fuel and future oil production scenarios, Energy Policy. 37(10) (2009) 4003-4010.

DOI: 10.1016/j.enpol.2009.04.048

Google Scholar

[16] F. Ma, M. A. Hanna, Biodiesel production: A review, Bioresource Technology. 70 (1999) 1-15.

Google Scholar

[17] D. Y. C. Leung, X. Wu, M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy. 87(4) (2010) 1083-1095.

DOI: 10.1016/j.apenergy.2009.10.006

Google Scholar

[18] J. M. Marchetti, V. U. Miguel, A. F. Errazu, Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews. 11(6) (2007) 1300-1311.

DOI: 10.1016/j.rser.2005.08.006

Google Scholar

[19] J. V. Gerpen, Biodiesel processing and production, Fuel Processing Technology. 86(10) (2005) 1097-1107.

DOI: 10.1016/j.fuproc.2004.11.005

Google Scholar

[20] S. Baroutian, M. K. Aroua, A. A. Abdul Raman, A. Shafie, R. A. Ismail, H. Hamdan, Blended aviation biofuel from esterified Jatropha curcas and waste vegetable oils, Journal of the Taiwan Institute of Chemical Engineers. 44(6) (2013) 911-916.

DOI: 10.1016/j.jtice.2013.02.007

Google Scholar

[21] N. K. Attia, E. A. Abdel Kader, G. ElDiwani, H. S. Hussein, R. El-Araby, Evaluation of blending of lowest emission biodiesel with Jet A for producing aviation biofuels, Utilization and Management of Bioresources. (2018).

DOI: 10.1007/978-981-10-5349-8_26

Google Scholar

[22] C. R. Ranucci, H. J. Alves, M. R. Monteiro, C. L. Kugelmeier, R. A. Bariccatti, C. R. de Oliveira, E. A. da Silva, Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene, Journal of Cleaner Production. 185 (2018) 860-869.

DOI: 10.1016/j.jclepro.2018.03.084

Google Scholar

[23] A. Llamas, M. J. García-Martínez, A. M. Al-Lal, L. Canoira, M. Lapuerta, Biokerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene, Fuel. 102 (2012) 483-490.

DOI: 10.1016/j.fuel.2012.06.108

Google Scholar

[24] A. Llamas, A. M. Al-Lal, M. Hernandez, M. Lapuerta, L. Canoira, Biokerosene from Babassu and Camelina oils: production and properties of their blends with fossil kerosene, Energy & Fuels. 26(9) (2012) 5968-5976.

DOI: 10.1021/ef300927q

Google Scholar

[25] A. H. H. Ali, M. N. Ibrahim, Performance and environmental impact of a turbojet engine fueled by blends of biodiesels, International Journal of Environmental Science and Technology. 14 (6) (2017) 1253-1266.

DOI: 10.1007/s13762-016-1228-4

Google Scholar

[26] M. N. Ibrahim, A. H. H. Ali, S. Ookawara, Experimental study on performance and emissions of turbojet engine fueled by alternative biodiesel, 23rd International Conference on: Environmental Protection is a Must, Alexandria, Egypt, 11-13 May (2013).

Google Scholar

[27] M. Noureldin, A. K. Abdel-Rahman, M. Bady, S. Ookawara, Experimental investigation of performance and exhaust emissions of a gas turbine engine fueled with waste cooking oil, 18th IFRF Conference- Flexible and clean fuel conversion to industry, Freising, Germany, 1-3 June (2015).

Google Scholar

[28] P. Arkoudeas, S. Kalligeros, F. Zannikos, G. Anastopoulos, D. Karonis, D. Korres, E. Lois, Study of using JP-8 aviation fuel and biodiesel in CI engines, Energy Conversion and Management. 44(7) (2003) 1013-1025.

DOI: 10.1016/s0196-8904(02)00112-7

Google Scholar

[29] Z. Habib, R. Parthasarathy, S. Gollahalli, Performance and emission characteristics of biofuel in a small-scale gas turbine engine, Applied Energy. 87(5) (2010) 1701-1709.

DOI: 10.1016/j.apenergy.2009.10.024

Google Scholar

[30] E. H. Tan, W. W. Liou, Performance and emission of a biofuel micro turbojet engine, AIAA 2013-0110, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 07–10 January (2013).

DOI: 10.2514/6.2013-110

Google Scholar

[31] E. Corporan, R. Reich, O. Monroig, M. J. DeWitt, V. Larson, T. Aulich, M. Mann, W. Seames, Impacts of biodiesel on pollutant emissions of a JP-8–fueled turbine engine. Journal of the Air & Waste Management Association. 55(7) (2005) 940-949.

DOI: 10.1080/10473289.2005.10464680

Google Scholar

[32] A. Llamas, M. Lapuerta, A. M. Al-Lal, L. Canoira, Oxygen extended sooting index of FAME blends with aviation kerosene, Energy & Fuels. 27(11) (2013) 6815-6822.

DOI: 10.1021/ef401623t

Google Scholar

[33] D. Daggett, O. Hadaller, R. Hendricks, R. Walther, Alternative fuels and their potential impact on aviation, 25th congress of the international council of the aeronautical sciences (ICAS), ICAS-2006-5.8.2, Hamburg, Germany, September 3–8, (2006).

Google Scholar

[34] D. L. Daggett, R. C. Hendricks, R. Walther, E. Corporan, Alternate fuels for use in commercial aircraft, 18th ISABE conference ISABE-2007-1196, Beijing, China, September 2–7, (2007).

Google Scholar

[35] http://www.acpaegypt.com/biodiesel.html.

Google Scholar

[36] M. A. Fahim, T. A. Al-Sahhaf, A. S. Elkilani, Fundamentals of Petroleum Refining, Chapter 9: Product Blending, Elsevier, (2010).

DOI: 10.1016/b978-0-444-52785-1.00009-7

Google Scholar

[37] M. R. Riazi, Characterization and Properties of Petroleum Fractions, ASTM International, Philadelphia, (2005).

Google Scholar

[38] Design practice, The blending manual, Snamprogetti, November (1998).

Google Scholar