[1]
National Oceanic and Atmospheric Administration (NOAA), ESRL data. Trends in atmospheric carbon dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html, (2019).
Google Scholar
[2]
T. Oda, S. Maksyutov, A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys. 11 (2011) 543-556.
DOI: 10.5194/acp-11-543-2011
Google Scholar
[3]
IPCC special report, Aviation and the global atmosphere, A special report of IPCC working groups I and III, (1999) Intergovernmental Panel on Climate Change.
DOI: 10.1017/cbo9781139151153.020
Google Scholar
[4]
Aviation benefits beyond borders, Air transport action group (ATAG), October (2018).
Google Scholar
[5]
M. Kousoulidou, L. Lonza, Biofuels in aviation: Fuel demand and CO2 emissions evolution in europe toward 2030, Transportation Research Part D: Transport and Environment. 46 (2016) 166-181.
DOI: 10.1016/j.trd.2016.03.018
Google Scholar
[6]
International Air Transport Association (IATA) Annual Review, (2018).
Google Scholar
[7]
J. Yang, Z. Xin, K. Corscadden, H. Niu, An overview on performance characteristics of bio-jet fuels, Fuel. 237 (2019) 916-936.
DOI: 10.1016/j.fuel.2018.10.079
Google Scholar
[8]
C. Gutiérrez-Antonio, F. I. Gómez-Castro, J. A. de Lira-Flores, S. Hernández, A review on the production processes of renewable jet fuel, Renewable and Sustainable Energy Reviews. 79 (2017) 709-729.
DOI: 10.1016/j.rser.2017.05.108
Google Scholar
[9]
R. Mawhood, E. Gazis, S. de Jong, R. Hoefnagels, R. Slade, Production pathways for renewable jet fuel: A review of commercialization status and future prospects, Biofuels, Bioproducts and Biorefining. 10 (2016) 462-484.
DOI: 10.1002/bbb.1644
Google Scholar
[10]
T. Radich, The flight paths for biojet fuel, Washington, DC20585 (2015).
Google Scholar
[11]
C. Gutiérrez-Antonio, F. I. Gómez-Castro, J. G. Segovia-Hernández, A. Briones-Ramírez, Simulation and optimization of a biojet fuel production process, Computer Aided Chemical Engineering. 32 (2013) 13-18.
DOI: 10.1016/b978-0-444-63234-0.50003-8
Google Scholar
[12]
G. W. Diederichs, M. A. Mandegari, S. Farzad, J. F. Görgens, Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice, Bioresource Technology. 216 (2016) 331-339.
DOI: 10.1016/j.biortech.2016.05.090
Google Scholar
[13]
M. Y. Kim, J. K. Kim, M. E. Lee, S. Lee, M. Choi, Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps, ACS catalysis. 7(9) (2017) 6256-6267.
DOI: 10.1021/acscatal.7b01326
Google Scholar
[14]
W. C. Wang, L. Tao, J. Markham, Y. Zhang, E. Tan, L. Batan, E. Warner, M. Biddy, Review of biojet fuel conversion technologies, No. NREL/TP-5100-66291, National Renewable Energy Lab. (NREL), Golden, CO (United States), (2016).
DOI: 10.2172/1278318
Google Scholar
[15]
E. Nygren, K. Aleklett, M. Höök, Aviation fuel and future oil production scenarios, Energy Policy. 37(10) (2009) 4003-4010.
DOI: 10.1016/j.enpol.2009.04.048
Google Scholar
[16]
F. Ma, M. A. Hanna, Biodiesel production: A review, Bioresource Technology. 70 (1999) 1-15.
Google Scholar
[17]
D. Y. C. Leung, X. Wu, M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy. 87(4) (2010) 1083-1095.
DOI: 10.1016/j.apenergy.2009.10.006
Google Scholar
[18]
J. M. Marchetti, V. U. Miguel, A. F. Errazu, Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews. 11(6) (2007) 1300-1311.
DOI: 10.1016/j.rser.2005.08.006
Google Scholar
[19]
J. V. Gerpen, Biodiesel processing and production, Fuel Processing Technology. 86(10) (2005) 1097-1107.
DOI: 10.1016/j.fuproc.2004.11.005
Google Scholar
[20]
S. Baroutian, M. K. Aroua, A. A. Abdul Raman, A. Shafie, R. A. Ismail, H. Hamdan, Blended aviation biofuel from esterified Jatropha curcas and waste vegetable oils, Journal of the Taiwan Institute of Chemical Engineers. 44(6) (2013) 911-916.
DOI: 10.1016/j.jtice.2013.02.007
Google Scholar
[21]
N. K. Attia, E. A. Abdel Kader, G. ElDiwani, H. S. Hussein, R. El-Araby, Evaluation of blending of lowest emission biodiesel with Jet A for producing aviation biofuels, Utilization and Management of Bioresources. (2018).
DOI: 10.1007/978-981-10-5349-8_26
Google Scholar
[22]
C. R. Ranucci, H. J. Alves, M. R. Monteiro, C. L. Kugelmeier, R. A. Bariccatti, C. R. de Oliveira, E. A. da Silva, Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene, Journal of Cleaner Production. 185 (2018) 860-869.
DOI: 10.1016/j.jclepro.2018.03.084
Google Scholar
[23]
A. Llamas, M. J. García-Martínez, A. M. Al-Lal, L. Canoira, M. Lapuerta, Biokerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene, Fuel. 102 (2012) 483-490.
DOI: 10.1016/j.fuel.2012.06.108
Google Scholar
[24]
A. Llamas, A. M. Al-Lal, M. Hernandez, M. Lapuerta, L. Canoira, Biokerosene from Babassu and Camelina oils: production and properties of their blends with fossil kerosene, Energy & Fuels. 26(9) (2012) 5968-5976.
DOI: 10.1021/ef300927q
Google Scholar
[25]
A. H. H. Ali, M. N. Ibrahim, Performance and environmental impact of a turbojet engine fueled by blends of biodiesels, International Journal of Environmental Science and Technology. 14 (6) (2017) 1253-1266.
DOI: 10.1007/s13762-016-1228-4
Google Scholar
[26]
M. N. Ibrahim, A. H. H. Ali, S. Ookawara, Experimental study on performance and emissions of turbojet engine fueled by alternative biodiesel, 23rd International Conference on: Environmental Protection is a Must, Alexandria, Egypt, 11-13 May (2013).
Google Scholar
[27]
M. Noureldin, A. K. Abdel-Rahman, M. Bady, S. Ookawara, Experimental investigation of performance and exhaust emissions of a gas turbine engine fueled with waste cooking oil, 18th IFRF Conference- Flexible and clean fuel conversion to industry, Freising, Germany, 1-3 June (2015).
Google Scholar
[28]
P. Arkoudeas, S. Kalligeros, F. Zannikos, G. Anastopoulos, D. Karonis, D. Korres, E. Lois, Study of using JP-8 aviation fuel and biodiesel in CI engines, Energy Conversion and Management. 44(7) (2003) 1013-1025.
DOI: 10.1016/s0196-8904(02)00112-7
Google Scholar
[29]
Z. Habib, R. Parthasarathy, S. Gollahalli, Performance and emission characteristics of biofuel in a small-scale gas turbine engine, Applied Energy. 87(5) (2010) 1701-1709.
DOI: 10.1016/j.apenergy.2009.10.024
Google Scholar
[30]
E. H. Tan, W. W. Liou, Performance and emission of a biofuel micro turbojet engine, AIAA 2013-0110, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 07–10 January (2013).
DOI: 10.2514/6.2013-110
Google Scholar
[31]
E. Corporan, R. Reich, O. Monroig, M. J. DeWitt, V. Larson, T. Aulich, M. Mann, W. Seames, Impacts of biodiesel on pollutant emissions of a JP-8–fueled turbine engine. Journal of the Air & Waste Management Association. 55(7) (2005) 940-949.
DOI: 10.1080/10473289.2005.10464680
Google Scholar
[32]
A. Llamas, M. Lapuerta, A. M. Al-Lal, L. Canoira, Oxygen extended sooting index of FAME blends with aviation kerosene, Energy & Fuels. 27(11) (2013) 6815-6822.
DOI: 10.1021/ef401623t
Google Scholar
[33]
D. Daggett, O. Hadaller, R. Hendricks, R. Walther, Alternative fuels and their potential impact on aviation, 25th congress of the international council of the aeronautical sciences (ICAS), ICAS-2006-5.8.2, Hamburg, Germany, September 3–8, (2006).
Google Scholar
[34]
D. L. Daggett, R. C. Hendricks, R. Walther, E. Corporan, Alternate fuels for use in commercial aircraft, 18th ISABE conference ISABE-2007-1196, Beijing, China, September 2–7, (2007).
Google Scholar
[35]
http://www.acpaegypt.com/biodiesel.html.
Google Scholar
[36]
M. A. Fahim, T. A. Al-Sahhaf, A. S. Elkilani, Fundamentals of Petroleum Refining, Chapter 9: Product Blending, Elsevier, (2010).
DOI: 10.1016/b978-0-444-52785-1.00009-7
Google Scholar
[37]
M. R. Riazi, Characterization and Properties of Petroleum Fractions, ASTM International, Philadelphia, (2005).
Google Scholar
[38]
Design practice, The blending manual, Snamprogetti, November (1998).
Google Scholar