Evaluation of Stainless Steel as an Electrocatalyst for Electrooxidation of Urea - Rich Wastewater

Article Preview

Abstract:

In this study, commercially available bare stainless steel 304 was investigated as a working electrode in urea electrooxidation in alkaline solution using different electrochemical techniques like cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrode stability was also investigated by the constant potential electrolysis test. Different concentrations of KOH (0.5-4 M) were employed to study the electrooxidation of urea solution with concentration of 0.33 M. An anodic peak current density of 34.82mA/cm2 was obtained at 473 mV versus Ag/AgCl reference electrode in urea solution at KOH concentration of 4 M. Stainless steel properties such as corrosion resistance, low cost in addition to its catalytic activity make it an ideal anodic electrocatalyst for electrooxidation of urea-rich wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

186-190

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. K. Boggs, R. L. King, and G. G. Botte, Urea electrolysis: Direct hydrogen production from urine,, Chem. Commun., vol. 2009, no. 32, p.4859–4861, (2009).

DOI: 10.1039/b905974a

Google Scholar

[2] A. N. Rollinson, J. Jones, V. Dupont, and M. V Twigg, Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply,, Energy Environ. Sci., vol. 4, no. 4, p.1216–1224, (2011).

DOI: 10.1039/c0ee00705f

Google Scholar

[3] E. T. Sayed et al., Direct urea fuel cells: Challenges and opportunities,, J. Power Sources, vol. 417, p.159–175, (2019).

Google Scholar

[4] L. Matijašević, I. Dejanović, and H. Lisac, Treatment of wastewater generated by urea production,, Resour. Conserv. Recycl., vol. 54, no. 3, p.149–154, (2010).

DOI: 10.1016/j.resconrec.2009.07.007

Google Scholar

[5] D. Liu et al., High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode,, J. Mater. Chem. A, vol. 5, no. 7, p.3208–3213, (2017).

DOI: 10.1039/c6ta11127k

Google Scholar

[6] N. M. Abdel-monem, O. E. Abdel-salam, A. F. Nassar, and M. H. Mahmoud, Oxidation of urea in human urine using flow-by porous graphite electrode,, vol. 4, no. DECEMBER 2013, p.1715–1723, (2015).

Google Scholar

[7] V. T. Mishra, M. Mehra, A. Gupta, A. Chaudhary, and R. G. Singh, Generation of Alternate fuel Hydrogen From Waste ( Urine ),, no. 1, p.97–101, (2016).

Google Scholar

[8] W. Xu, Z. Wu, and S. Tao, Urea-Based Fuel Cells and Electrocatalysts for Urea Oxidation,, Energy Technol., vol. 4, no. 11, p.1329–1337, (2016).

DOI: 10.1002/ente.201600185

Google Scholar

[9] E. Urbańczyk, A. Jaroń, and W. Simka, Electrocatalytic oxidation of urea on a sintered Ni–Pt electrode,, J. Appl. Electrochem., vol. 47, no. 1, p.133–138, (2017).

DOI: 10.1007/s10800-016-1024-3

Google Scholar

[10] V. Vedharathinam and G. G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium,, Electrochim. Acta, vol. 81, p.292–300, (2012).

DOI: 10.1016/j.electacta.2012.07.007

Google Scholar

[11] P. Mirzaei et al., Electrochemical oxidation of urea on nickel-rhodium nanoparticles/carbon composites,, Electrochim. Acta, vol. 297, p.715–724, (2019).

DOI: 10.1016/j.electacta.2018.11.205

Google Scholar

[12] W. Simka, J. Piotrowski, and G. Nawrat, Influence of anode material on electrochemical decomposition of urea,, Electrochim. Acta, vol. 52, no. 18, p.5696–5703, May (2007).

DOI: 10.1016/j.electacta.2006.12.017

Google Scholar

[13] J. C. Wright, A. S. Michaels, and A. J. Appleby, Electrooxidation of urea at the ruthenium titanium oxide electrode,, AIChE J., vol. 32, no. 9, p.1450–1458, Sep. (1986).

DOI: 10.1002/aic.690320906

Google Scholar

[14] D. Yang, L. Yang, L. Zhong, X. Yu, and L. Feng, Urea electro-oxidation efficiently catalyzed by nickel-molybdenum oxide nanorods,, Electrochim. Acta, vol. 295, p.524–531, (2019).

DOI: 10.1016/j.electacta.2018.10.190

Google Scholar

[15] E. Urbańczyk, M. Sowa, and W. Simka, Urea removal from aqueous solutions—a review,, J. Appl. Electrochem., vol. 46, no. 10, p.1011–1029, (2016).

DOI: 10.1007/s10800-016-0993-6

Google Scholar

[16] J. M. Olivares-Ramírez, M. L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, and R. H. Castellanos, Studies on the hydrogen evolution reaction on different stainless steels,, Int. J. Hydrogen Energy, vol. 32, no. 15, p.3170–3173, (2007).

DOI: 10.1016/j.ijhydene.2006.03.017

Google Scholar

[17] K. C. Leonard, M. I. Tejedor-Anderson, and M. A. Anderson, Nanoporous oxide coatings on stainless steel to enable water splitting and reduce the hydrogen evolution overpotential,, Int. J. Hydrogen Energy, vol. 37, no. 24, p.18654–18660, (2012).

DOI: 10.1016/j.ijhydene.2012.10.008

Google Scholar

[18] F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Development of an oxygen-evolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium-air batteries,, J. Power Sources, vol. 229, p.123–132, (2013).

DOI: 10.1016/j.jpowsour.2012.11.133

Google Scholar

[19] F. Yu, F. Li, and L. Sun, Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution,, Int. J. Hydrogen Energy, vol. 41, no. 10, p.5230–5233, (2016).

DOI: 10.1016/j.ijhydene.2016.01.108

Google Scholar

[20] M. S. M. Abdel-Aziz, A. H. El-Shazly, H. A. Farag, and G. H. Sedahmed, Mass transfer behavior of rotating square cylinder electrochemical reactor in relation to wastewater treatment,, Energy Convers. Manag., vol. 52, no. 8–9, p.2870–2875, (2011).

DOI: 10.1016/j.enconman.2011.04.001

Google Scholar

[21] F. M. Sapountzi, J. M. Gracia, C. J. K. Weststrate, H. O. A. Fredriksson, and J. W. H. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas,, Prog. Energy Combust. Sci., vol. 58, p.1–35, (2017).

DOI: 10.1016/j.pecs.2016.09.001

Google Scholar