[1]
B. K. Boggs, R. L. King, and G. G. Botte, Urea electrolysis: Direct hydrogen production from urine,, Chem. Commun., vol. 2009, no. 32, p.4859–4861, (2009).
DOI: 10.1039/b905974a
Google Scholar
[2]
A. N. Rollinson, J. Jones, V. Dupont, and M. V Twigg, Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply,, Energy Environ. Sci., vol. 4, no. 4, p.1216–1224, (2011).
DOI: 10.1039/c0ee00705f
Google Scholar
[3]
E. T. Sayed et al., Direct urea fuel cells: Challenges and opportunities,, J. Power Sources, vol. 417, p.159–175, (2019).
Google Scholar
[4]
L. Matijašević, I. Dejanović, and H. Lisac, Treatment of wastewater generated by urea production,, Resour. Conserv. Recycl., vol. 54, no. 3, p.149–154, (2010).
DOI: 10.1016/j.resconrec.2009.07.007
Google Scholar
[5]
D. Liu et al., High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode,, J. Mater. Chem. A, vol. 5, no. 7, p.3208–3213, (2017).
DOI: 10.1039/c6ta11127k
Google Scholar
[6]
N. M. Abdel-monem, O. E. Abdel-salam, A. F. Nassar, and M. H. Mahmoud, Oxidation of urea in human urine using flow-by porous graphite electrode,, vol. 4, no. DECEMBER 2013, p.1715–1723, (2015).
Google Scholar
[7]
V. T. Mishra, M. Mehra, A. Gupta, A. Chaudhary, and R. G. Singh, Generation of Alternate fuel Hydrogen From Waste ( Urine ),, no. 1, p.97–101, (2016).
Google Scholar
[8]
W. Xu, Z. Wu, and S. Tao, Urea-Based Fuel Cells and Electrocatalysts for Urea Oxidation,, Energy Technol., vol. 4, no. 11, p.1329–1337, (2016).
DOI: 10.1002/ente.201600185
Google Scholar
[9]
E. Urbańczyk, A. Jaroń, and W. Simka, Electrocatalytic oxidation of urea on a sintered Ni–Pt electrode,, J. Appl. Electrochem., vol. 47, no. 1, p.133–138, (2017).
DOI: 10.1007/s10800-016-1024-3
Google Scholar
[10]
V. Vedharathinam and G. G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium,, Electrochim. Acta, vol. 81, p.292–300, (2012).
DOI: 10.1016/j.electacta.2012.07.007
Google Scholar
[11]
P. Mirzaei et al., Electrochemical oxidation of urea on nickel-rhodium nanoparticles/carbon composites,, Electrochim. Acta, vol. 297, p.715–724, (2019).
DOI: 10.1016/j.electacta.2018.11.205
Google Scholar
[12]
W. Simka, J. Piotrowski, and G. Nawrat, Influence of anode material on electrochemical decomposition of urea,, Electrochim. Acta, vol. 52, no. 18, p.5696–5703, May (2007).
DOI: 10.1016/j.electacta.2006.12.017
Google Scholar
[13]
J. C. Wright, A. S. Michaels, and A. J. Appleby, Electrooxidation of urea at the ruthenium titanium oxide electrode,, AIChE J., vol. 32, no. 9, p.1450–1458, Sep. (1986).
DOI: 10.1002/aic.690320906
Google Scholar
[14]
D. Yang, L. Yang, L. Zhong, X. Yu, and L. Feng, Urea electro-oxidation efficiently catalyzed by nickel-molybdenum oxide nanorods,, Electrochim. Acta, vol. 295, p.524–531, (2019).
DOI: 10.1016/j.electacta.2018.10.190
Google Scholar
[15]
E. Urbańczyk, M. Sowa, and W. Simka, Urea removal from aqueous solutions—a review,, J. Appl. Electrochem., vol. 46, no. 10, p.1011–1029, (2016).
DOI: 10.1007/s10800-016-0993-6
Google Scholar
[16]
J. M. Olivares-Ramírez, M. L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, and R. H. Castellanos, Studies on the hydrogen evolution reaction on different stainless steels,, Int. J. Hydrogen Energy, vol. 32, no. 15, p.3170–3173, (2007).
DOI: 10.1016/j.ijhydene.2006.03.017
Google Scholar
[17]
K. C. Leonard, M. I. Tejedor-Anderson, and M. A. Anderson, Nanoporous oxide coatings on stainless steel to enable water splitting and reduce the hydrogen evolution overpotential,, Int. J. Hydrogen Energy, vol. 37, no. 24, p.18654–18660, (2012).
DOI: 10.1016/j.ijhydene.2012.10.008
Google Scholar
[18]
F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Development of an oxygen-evolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium-air batteries,, J. Power Sources, vol. 229, p.123–132, (2013).
DOI: 10.1016/j.jpowsour.2012.11.133
Google Scholar
[19]
F. Yu, F. Li, and L. Sun, Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution,, Int. J. Hydrogen Energy, vol. 41, no. 10, p.5230–5233, (2016).
DOI: 10.1016/j.ijhydene.2016.01.108
Google Scholar
[20]
M. S. M. Abdel-Aziz, A. H. El-Shazly, H. A. Farag, and G. H. Sedahmed, Mass transfer behavior of rotating square cylinder electrochemical reactor in relation to wastewater treatment,, Energy Convers. Manag., vol. 52, no. 8–9, p.2870–2875, (2011).
DOI: 10.1016/j.enconman.2011.04.001
Google Scholar
[21]
F. M. Sapountzi, J. M. Gracia, C. J. K. Weststrate, H. O. A. Fredriksson, and J. W. H. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas,, Prog. Energy Combust. Sci., vol. 58, p.1–35, (2017).
DOI: 10.1016/j.pecs.2016.09.001
Google Scholar