Effects of Doping on Zeta Potential and pH of Polyaniline Colloidal Suspension

Article Preview

Abstract:

Polyaniline (PANI) has successfully been prepared by chemical oxidation polymerization of aniline monomer. The prepared polymer was confirmed by XRD. The conducting form of PANI known as emeraldine salt (ES) through different concentrations of formic acid; 0.4 mmol/ L, 2mmol/ L, 6 mmol/ L, 8 mmol/ L, 10 mmol/ L, and 12 mmol/L is prepared from its insulating emeraldine base (EB) by levels of doping. The objective is to establish a correlation between the levels of doping, the zeta potential of the suspension. Positive zeta potential values (24.75, 27, 33.25, 36.75, 40.50, and 42) mV were obtained for the various PANI suspension. This showed the acquisition of positive charges by the PANI after doping. The observation was made that zeta potential values increases as formic acid concentration increased. This was correlated using UV/VIS spectra and electrophoretic coating with the polyaniline suspensions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1008)

Pages:

114-120

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. O. Magu, A. U. Agobi, L. Hitler, and P. M. Dass, A Review on Conducting Polymers-Based Composites for Energy Storage Application,, J. Chem. Rev., vol. 1, no. Issue 1, pp.1-77., p.19–34, Jan. (2019).

Google Scholar

[2] M. V. Kulkarni, A. K. Viswanath, R. Marimuthu, and T. Seth, Synthesis and characterization of polyaniline doped with organic acids,, J. Polym. Sci. Part A Polym. Chem., vol. 42, no. 8, p.2043–2049, Apr. (2004).

DOI: 10.1002/pola.11030

Google Scholar

[3] C. R. Morgan, F. Magnotta, and A. D. Ketley, Thiol/ene photocurable polymers,, J. Polym. Sci. Polym. Chem. Ed., vol. 15, no. 3, p.627–645, Mar. (1977).

DOI: 10.1002/pol.1977.170150311

Google Scholar

[4] Q. Li and N. J. Bjerrum, Aluminum as anode for energy storage and conversion: a review,, J. Power Sources, vol. 110, no. 1, p.1–10, Jul. (2002).

DOI: 10.1016/s0378-7753(01)01014-x

Google Scholar

[5] Communication Macromolecular Rapid Communications,, (2013).

Google Scholar

[6] C. Yang and C. Chen, Synthesis, characterisation and properties of polyanilines containing transition metal ions,, Synth. Met., vol. 153, no. 1–3, p.133–136, Sep. (2005).

DOI: 10.1016/j.synthmet.2005.07.136

Google Scholar

[7] A. N. J. Al-Daghman, Optoelectronic Properties of Conducting Polyaniline (PANi-ES/HCl),, Int. J. Sci. Eng. Appl. Sci., no. 4, (2018).

Google Scholar

[8] J. E. De Albuquerque, L. H. C. Mattoso, R. M. Faria, J. G. Masters, and A. G. MacDiarmid, Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy,, Synth. Met., vol. 146, no. 1, p.1–10, Oct. (2004).

DOI: 10.1016/j.synthmet.2004.05.019

Google Scholar

[9] A. R. Hillman and M. A. Mohamoud, Ion, solvent and polymer dynamics in polyaniline conducting polymer films,, Electrochim. Acta, vol. 51, no. 27, p.6018–6024, Aug. (2006).

DOI: 10.1016/j.electacta.2005.11.054

Google Scholar

[10] N. V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, and M. Omastová, Polyaniline and polypyrrole: A comparative study of the preparation,, Eur. Polym. J., vol. 43, no. 6, p.2331–2341, Jun. (2007).

DOI: 10.1016/j.eurpolymj.2007.03.045

Google Scholar

[11] H. Fisal Alesary, H. Khalil Ismail, A. Fadhil Khudhair, and M. Qasim Mohammed, Effects of Dopant Ions on the Properties of Polyaniline Conducting Polymer,, Orient. J. Chem., vol. 34, no. 5, p.2525–2533, Oct. (2018).

DOI: 10.13005/ojc/340539

Google Scholar

[12] P. Xu, B. Zhang, S. Chen, and J. He, Influence of humidity on the characteristics of positive corona discharge in air,, Phys. Plasmas, vol. 23, no. 6, p.063511, Jun. (2016).

DOI: 10.1063/1.4953890

Google Scholar

[13] M. Hatamzadeh, A. Mahyar, and M. Jaymand, Chemical modification of polyaniline by N-grafting of polystyrenic chains synthesized via nitroxide-mediated polymerization,, J. Braz. Chem. Soc., vol. 23, no. 6, p.1008–1017, Jun. (2012).

DOI: 10.1590/s0103-50532012000600003

Google Scholar

[14] E. S. Matveeva, Could the acid doping of polyaniline represent the charge transfer interaction?,, Synth. Met., vol. 83, no. 2, p.89–96, Nov. (1996).

DOI: 10.1016/s0379-6779(97)80059-8

Google Scholar

[15] G. Li, C. Martinez, and S. Semancik, Controlled electrophoretic patterning of polyaniline from a colloidal suspension,, J. Am. Chem. Soc., vol. 127, no. 13, p.4903–4909, (2005).

DOI: 10.1021/ja0441763

Google Scholar

[16] G. M. Deloid, J. M. Cohen, G. Pyrgiotakis, and P. Demokritou, Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials,, Nat. Protoc., vol. 12, no. 2, p.355–371, Feb. (2017).

DOI: 10.1038/nprot.2016.172

Google Scholar

[17] I. Y. Sapurina and M. A. Shishov, Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures,, in New Polymers for Special Applications, InTech, (2012).

DOI: 10.5772/48758

Google Scholar

[18] C. L. de Vasconcelos, M. R. Pereira, and J. L. C. Fonseca, Polyelectrolytes in Solution and the Stabilization of Colloids,, J. Dispers. Sci. Technol., vol. 26, no. 1, p.59–70, Jan. (2005).

Google Scholar

[19] S. Schwarz, J. Nagel, A. Janke, W. Jaeger, and S. Bratskaya, Adsorption of Polyelectrolytes with Hydrophobic Parts,, in Characterization of Polymer Surfaces and Thin Films, Berlin/Heidelberg: Springer-Verlag, p.102–109.

DOI: 10.1007/2882_039

Google Scholar

[20] T. Missana and A. Adell, On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability,, J. Colloid Interface Sci., vol. 230, no. 1, p.150–156, Oct. (2000).

DOI: 10.1006/jcis.2000.7003

Google Scholar

[21] R. Doering and Y. Nishi, Handbook of semiconductor manufacturing technology. CRC Press, (2008).

Google Scholar

[22] A. Abdelraheem, A. H. El-Shazly, and M. F. El-Kady, Nanofiber Polyaniline and Polyaniline-Clay Nanocomposite Prepared via Sonochemical and Sol-Gel Techniques,, Mater. Sci. Forum, vol. 860, no. July, p.12–16, (2016).

DOI: 10.4028/www.scientific.net/msf.860.12

Google Scholar

[23] R. Zana, Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution,, J. Colloid Interface Sci., vol. 248, no. 2, p.203–220, Apr. (2002).

DOI: 10.1006/jcis.2001.8104

Google Scholar

[24] M. D. Butterworth, R. Corradi, J. Johal, S. F. Lascelles, S. Maeda, and S. P. Armes, Zeta Potential Measurements on Conducting Polymer-Inorganic Oxide Nanocomposite Particles,, J. Colloid Interface Sci., vol. 174, no. 2, p.510–517, Sep. (1995).

DOI: 10.1006/jcis.1995.1418

Google Scholar

[25] J. Nawrocki, The silanol group and its role in liquid chromatography,, J. Chromatogr. A, vol. 779, no. 1–2, p.29–71, Aug. (1997).

DOI: 10.1016/s0021-9673(97)00479-2

Google Scholar

[26] A. K. Andrianov, Polyphosphazenes for biomedical applications. Wiley, (2009).

Google Scholar

[27] A. Malinauskas and R. Holze, Cyclic UV-Vis spectrovoltammetry of polyaniline,, Synth. Met., vol. 97, no. 1, p.31–36, Aug. (1998).

DOI: 10.1016/s0379-6779(98)00106-4

Google Scholar

[28] C. M. Koo, B. H. Jeon, and I. J. Chung, The Effect of Poly(methyl vinyl ether-alt-maleic acid) Stabilizer on the Stability of Polyaniline–Poly(methyl vinyl ether-alt-maleic acid) Dispersions,, J. Colloid Interface Sci., vol. 227, no. 2, p.316–321, Jul. (2000).

DOI: 10.1006/jcis.2000.6898

Google Scholar