Improvement of Poly(Lactic Acid) Properties by Ethylene-Octene Copolymer and Organoclay

Article Preview

Abstract:

The work studied the morphological, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC) blends before and after adding the montmorillonite clay surface modified with 25-30% of octadecylamine (clay-ODA). The PLA/EOC blends and composites were prepared by melt mixing in an internal mixer. The EOC contents were 5, 10, 20, 30 wt% and clay-ODA contents were 1 and 3 phr. The morphology analysis showed that the addition of clay-ODA could improve the miscibility of PLA and EOC phases due to the domain size of dispersed EOC phase decreased with increasing clay-ODA content. X-ray diffraction revealed the formation of intercalated/exfoliated structure in PLA/clay-ODA and PLA blend composites. The mechanical properties showed that the impact strength of PLA/EOC blends dramatically increased with increasing EOC content up to 10 wt%. The strain at break of PLA blends increased with increasing EOC content. Moreover, the incorporation of clay-ODA increased significantly Young’s modulus of PLA and PLA/EOC blends with increasing clay-ODA content. The thermal stability of PLA/EOC blends improved with the addition of a small amount of clay-ODA.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1009)

Pages:

43-48

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kumar, S. Mohanty, S.K. Nayak and M. Rahail Parvaiz: Bioresource Technology Vol. 101 (2010), p.8406.

Google Scholar

[2] P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong and Y. Ruksakulpiwat: J. Appl. Polym. Sci. Vol. 125 (2012), p.745.

DOI: 10.1002/app.36263

Google Scholar

[3] M.M.F. Ferrarezi, M. de Oliveira Taipina, L.C.E. da Silva, M. do Carmo Gonçalves: J. Polym. Environ. Vol. 21 (2013), p.151.

Google Scholar

[4] S. Yıldız, B. Karaaĝaç and G. Ozkoc: Polym. Eng. Sci. Vol. 54 (2014), p. (2029).

Google Scholar

[5] A. Thepthawat and K. Srikulkit: Polym. Eng. Sci. Vol. 54 (2014), p.2770.

Google Scholar

[6] C.A. Rodrigues, A. Tofanello, I.L. Nantes and D.S. Rosa: ACS Sustainable Chem. Eng. Vol. 3 (2015), p.2756.

Google Scholar

[7] R. Jaratrotkamjorn, C. Khaokong and V. Tanrattanakul: J. Appl. Polym. Sci. Vol. 124 (2012), p.5027.

Google Scholar

[8] W.D. Na Ayutthaya and S. Poompradub: Macromolecular Research, Vol. 22 (2014), p.686.

Google Scholar

[9] S. Lee, Y. Lee and J.W. Lee: Macromolecular Research, Vol. 15 (2007), p.44.

Google Scholar

[10] N. Zhang, Q. Wang, J. Ren and L. Wang: J. Mater. Sci. Vol. 44 (2009), p.250.

Google Scholar

[11] N. Zhang, C. Zeng, L. Wang and J. Ren: J. Polym. Environ. Vol. 21 (2013), p.286.

Google Scholar

[12] E. Hassan, Y. Wei, H. Jiao and Y. Muhuo: Journal of Fiber Bioengineering and Informatics Vol. 6 (2013), p.85.

Google Scholar

[13] V.H. Sangeetha, R.B. Valapa, S.K. Nayak and T.O. Varghese: J. Polym. Environ. Vol. 26 (2018), p.1.

Google Scholar

[14] Z. Qu, X. Hu, X. Pan and J. Bu: Polymer Science, Series A Vol. 60 (2018), p.499.

Google Scholar

[15] M. Nofar, M.-C. Heuzey, P.J. Carreau, M.R. Kamal: Polymer Vol. 98 (2016), p.353.

Google Scholar

[16] T. Baouz, F. Rezgui and U. Yilmazer: J. Appl. Polym. Sci. Vol. 128 (2013), p.3193.

Google Scholar

[17] R. Salehiyan and K. Hyun: Korean J. Chem. Eng. Vol. 30 (2013), p.1013.

Google Scholar

[18] A. Hasook, S. Tanoue and Y. Iemoto: Polym. Eng. Sci. Vol. 46 (2006), p.1001.

Google Scholar