Graphene Hypersurface for Manipulation of THz Waves

Article Preview

Abstract:

In this work, we investigated graphene hypersurface (HSF) for the manipulation of THz waves. The graphene HSF structure is consists of a periodic array of graphene unit cells deposited on silicon substrate and terminated by a metallic ground plane. The performance of the proposed HSF is numerically analyzed. Electromagnetic parameters of HSF such as permeability, permittivity, and impedance are studied. The proposed graphene HSF has active control over absorption, reflection, and transmission of THz waves. The graphene HSF provides perfect absorption, zero reflection and zero transmission at resonance. Moreover, the graphene HSF structure has the advantage of anomalous reflection and frequency reconfiguration. Incident waves can be reflected in the desired direction, depending on the phase gradient of the HSF and the perfect absorption is maintained at all reconfigurable frequencies upon reconfiguration. The results reveal the effectiveness of the graphene HSF for the manipulation of THz waves.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1009)

Pages:

63-68

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. R. Jha and G. Singh, Terahertz planar antenna for future wireless communication: A technical review, Infrared Physics & Technology, vol.60, pp.71-80, (2013).

DOI: 10.1016/j.infrared.2013.03.009

Google Scholar

[2] F. H. L. Koppens D. E. Chang, and F. J G. Abajo, Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,, Nano Lett. , vol.11 (8), pp.3370-3377, (2011).

DOI: 10.1021/nl201771h

Google Scholar

[3] S. Dash, and A. Patnaik, Material selection for THz antennas,, Microwave and Optical Technology Letters, vol. 60, pp.1183-1187, (2018).

DOI: 10.1002/mop.31127

Google Scholar

[4] S. Dash, A. Patnaik and B. K. Kaushik, Performance Enhancement of Graphene Plasmonic Nanoantenna For THz Communication,, IET Microwaves, Antennas & Propagation, vol. 13, no. 1, pp.71-75, (2019).

DOI: 10.1049/iet-map.2018.5320

Google Scholar

[5] S. Dash, and A. Patnaik, Sub-wavelength Graphene Planar nanoantenna for THz Application,, Materials Today: Proceedings, vol. 18, Part 3, pp.1336-1341, (2019).

DOI: 10.1016/j.matpr.2019.06.598

Google Scholar

[6] A. Akhavan, S. Abdolhosseini, H. Ghafoorifard, and H. Habibiyan, Narrow Band Total Absorber a Near-Infrared Wavelengths Using Monolayer Graphene and Sub-Wavelength Grating Based on Critical Coupling, IEEE Journal of Lightwave Technology, vol. 36 (23), (2018).

DOI: 10.1109/jlt.2018.2876374

Google Scholar

[7] D. Rodrigo O. Limaj, D. Janner, D. Etezadi, F. J. G. Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene,, Science, vol. 349, no. 6244, p.165–168, (2015).

DOI: 10.1126/science.aab2051

Google Scholar

[8] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang and X. Zhang, A graphene-based broadband optical modulator,, Nature, vol. 474, no. 7349, p.64–67, (2011).

DOI: 10.1038/nature10067

Google Scholar

[9] C.-H. Liu, Y. Chang, T. B. Norris, and Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature,, Nature Nanotechnol., vol. 9 (4), p.273–278, (2014).

DOI: 10.1038/nnano.2014.31

Google Scholar

[10] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next-generation wireless systems,, Ad Hoc Networks, vol. 87, pp.1-16, (2019).

DOI: 10.1016/j.adhoc.2018.11.001

Google Scholar

[11] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials,, Nat. Nanotech., vol. 6, pp.630-634, (2011).

DOI: 10.1038/nnano.2011.146

Google Scholar

[12] A. K. Geim, and K. S. Novoselov, The rise of graphene,, Nature Materials, vol. 6, p.183–191, (2007).

Google Scholar

[13] V. Gusynin, S. Sharapov, J. Carbotte, Magneto-optical conductivity in graphene,, J. Phys.: Cond. Matter, vol. 19, no. 2, pp.026-222(1–28), (2006).

DOI: 10.1088/0953-8984/19/2/026222

Google Scholar

[14] W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli et al., Complex Mode Spectra of Graphene-Based Planar Structures for THz Applications,, J Infrared Milli Terahertz Waves, vol. 36, p.720–733, (2015).

DOI: 10.1007/s10762-015-0178-0

Google Scholar

[15] A. Vakil and N. Engheta, Transformation optics using graphene,, Science, vol. 332(6035), p.1291–1294, (2011).

DOI: 10.1126/science.1202691

Google Scholar