Comparison between CNT Thermal Interface Materials with Graphene Thermal Interface Material in Term of Thermal Conductivity

Article Preview

Abstract:

Thermal interface material (TIM) had been well conducted and developed by using several material as based material. A lot of combination and mixed material were used to increase thermal properties of TIM. Combination between materials for examples carbon nanotubes (CNT) and epoxy had had been used before but the significant of the studied are not exactly like predicted. In this studied, thermal interface material using graphene and CNT as main material were used to increase thermal conductivity and thermal contact resistance. These two types of TIM had been compare to each other in order to find wich material were able to increase the thermal conductivity better. The sample that contain 20 wt. %, 40 wt. % and 60 wt. % of graphene and CNT were used in this studied. The thermal conductivity of thermal interface material is both measured and it was found that TIM made of graphene had better thermal conductivity than CNT. The highest thermal conductivity is 23.2 W/ (mK) with 60 w. % graphene meanwhile at 60 w. % of CNT only produce 12.2 W/ (mK thermal conductivity).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

160-165

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Mazlan, a. M. M. Al Bakri, R. Wahab, a. K. Zulhisyam, a. M. Iqbal, M. H. M. Amini, and A. a. Mohammad, Simulation of Nano Carbon Tube (NCT) in Thermal Interface Material for Electronic Packaging Application by Using CFD Software,, Mater. Sci. Forum, vol. 803, p.337–342, Aug. (2014).

DOI: 10.4028/www.scientific.net/msf.803.337

Google Scholar

[2] M. Mazlan, A. M. M. Al Bakri, R. Wahab, A. K. Zulhisyam, M. R. Mohd Sukhairi, M. H. M. Amini, and A. Mohammad Amizi, Comparison between Thermal Interface Materials Made of Nano Carbon Tube (NCT) with Gad Pad 2500 in Term of Junction Temperature by Using CFD Software, Fluent,, Mater. Sci. Forum, vol. 803, p.243–249, (2014).

DOI: 10.4028/www.scientific.net/msf.803.243

Google Scholar

[3] X. Han, Y. Wang, and Q. Liang, Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources,, Int. Commun. Heat Mass Transf., vol. 94, no. April, p.71–76, (2018).

DOI: 10.1016/j.icheatmasstransfer.2018.03.017

Google Scholar

[4] K. P. Drummond, D. Back, M. D. Sinanis, D. B. Janes, D. Peroulis, J. A. Weibel, and S. V. Garimella, A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics,, Int. J. Heat Mass Transf., vol. 117, p.319–330, (2018).

DOI: 10.1016/j.ijheatmasstransfer.2017.10.015

Google Scholar

[5] A. S. El-Adl, M. G. Mousa, and A. A. Hegazi, Performance analysis of a passively cooled thermoelectric generator,, Energy Convers. Manag., vol. 173, no. August, p.399–411, (2018).

DOI: 10.1016/j.enconman.2018.07.092

Google Scholar

[6] M. Mazlan, A. Kalam, N. R. Abdullah, H.-S. Loo, A. M. M. Al Bakri, M. S. A. Aziz, C. Y. Khor, M. A. A., and M. . Mohd Sukhairi, The Effect of Gap between Plastic Leaded Chip Carrier ( PLCC ) Using Computational,, Adv. Environ. Biol. J., vol. 7, p.3843–3849, (2013).

Google Scholar

[7] M. Mazlan, A. Kalam, N. R. Abdullah, H.-S. Loo, A. M. M. Al Bakri, M. S. A. Aziz, C. Y. Khor, M. A. A., and M. . Mohd Sukhairi, Development of Nano-Material ( Nano-Silver ) in Electronic Components Application,, Adv. Environ. Biol., vol. 7, p.3850–3856, (2013).

Google Scholar

[8] M. Mazlan, A. Rahim, A. M. Mustafa Al Bakri, M. a. Iqbal, W. Razak, and M. S. Salim, A New Invention of Thermal Pad Using Sol-Gel Nanosilver Doped Silica Film in Plastic Leaded Chip Carrier (PLCC) Application by Using Computational Fluid Dynamic Sofrware, CFD Analysis,, Adv. Mater. Res., vol. 795, p.158–163, Sep. (2013).

DOI: 10.4028/www.scientific.net/amr.795.158

Google Scholar

[9] G. Takács, G. Bognár, E. Bándy, G. Rózsás, and P. G. Szabó, Fabrication and characterization of microscale heat sinks,, Microelectron. Reliab., vol. 79, p.480–487, (2017).

DOI: 10.1016/j.microrel.2017.05.028

Google Scholar

[10] A. L. Moore and L. Shi, Emerging challenges and materials for thermal management of electronics,, Mater. Today, vol. 17, no. 4, p.163–174, (2014).

Google Scholar

[11] M. A. Alghoul, S. A. Shahahmadi, B. Yeganeh, N. Asim, A. M. Elbreki, K. Sopian, S. K. Tiong, and N. Amin, A review of thermoelectric power generation systems: Roles of existing test rigs/ prototypes and their associated cooling units on output performance,, Energy Convers. Manag., vol. 174, no. April, p.138–156, (2018).

DOI: 10.1016/j.enconman.2018.08.019

Google Scholar

[12] T. Cui, Q. Li, Y. Xuan, and P. Zhang, Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials,, Microelectron. Reliab., vol. 55, no. 12, p.2569–2574, (2015).

DOI: 10.1016/j.microrel.2015.07.036

Google Scholar

[13] S. C. Lin, C. C. M. Ma, W. H. Liao, J. A. Wang, S. J. Zeng, S. Y. Hsu, Y. H. Chen, S. T. Hsiao, T. Y. Cheng, C. W. Lin, and P. Y. Hsiao, Preparation of a graphene–silver nanowire hybrid/silicone rubber composite for thermal interface materials,, J. Taiwan Inst. Chem. Eng., vol. 68, p.396–406, (2016).

DOI: 10.1016/j.jtice.2016.08.009

Google Scholar

[14] K. M. F. Shahil and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials,, Solid State Commun., vol. 152, no. 15, p.1331–1340, (2012).

DOI: 10.1016/j.ssc.2012.04.034

Google Scholar

[15] B. Tang, G. Hu, H. Gao, and L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials,, Int. J. Heat Mass Transf., vol. 85, p.420–429, (2015).

DOI: 10.1016/j.ijheatmasstransfer.2015.01.141

Google Scholar

[16] S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, Solution properties of graphite and graphene,, J. Am. Chem. Soc., vol. 128, no. 24, p.7720–7721, (2006).

DOI: 10.1021/ja060680r

Google Scholar

[17] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonson, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Seville, and I. A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide,, J. Phys. Chem. B, vol. 110, no. 17, p.8535–8539, (2006).

DOI: 10.1021/jp060936f

Google Scholar

[18] M. Mazlan, A. Rahim, A. M. M. A. I. Bakri, A. F. Zubair, Y. M. Najib, and A. B. Azman, Thermal Management of Electronic Components by Using Computational Fluid Dynamic ( CFD ) Software , FLUENT TM in Several Material Applications ( Epoxy , Composite Material & Nano-silver ),, Adv. Mater. Res., vol. 795, no. 1982, p.141–147, (2013).

DOI: 10.4028/www.scientific.net/amr.795.141

Google Scholar

[19] M. Mazlan, a. Rahim, M. a. Iqbal, A. M. Mustafa Al Bakri, W. Razak, and M. R. Mohd Sukhairi, The Comparison between Four PLCC Packages and Eight PLCC Packages in Personal Computer (PC) Using Computational Fluid Dynamic (CFD), FLUENT SoftwareTM Using Epoxy Moulding Compound Material (EMC),, Adv. Mater. Res., vol. 795, p.174–181, Sep. (2013).

DOI: 10.4028/www.scientific.net/amr.795.174

Google Scholar

[20] M. Mazlan, a. Rahim, M. a. Iqbal, A. M. Mustafa Al Bakri, W. Razak, and H. M. Nor Hakim, Numerical Investigation of Heat Transfer of Twelve Plastic Leaded Chip Carrier (PLCC) by Using Computational Fluid Dynamic, FLUENTTM Software,, Adv. Mater. Res., vol. 795, p.603–610, Sep. (2013).

DOI: 10.4028/www.scientific.net/amr.795.603

Google Scholar

[21] T. Baba and A. Ono, Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements,, Meas. Sci. Technol., vol. 12, no. 12, p.2046–2057, (2001).

DOI: 10.1088/0957-0233/12/12/304

Google Scholar

[22] K. M.F. Shahil and A. A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials,, Nano Letters, vol. 12, no. 2. p.861–867, (2012).

DOI: 10.1021/nl203906r

Google Scholar

[23] S. H. Xie, Y. Y. Liu, and J. Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes,, Appl. Phys. Lett., vol. 92, no. 24, p.1–3, (2008).

DOI: 10.1063/1.2949074

Google Scholar