[1]
M. Mazlan, a. M. M. Al Bakri, R. Wahab, a. K. Zulhisyam, a. M. Iqbal, M. H. M. Amini, and A. a. Mohammad, Simulation of Nano Carbon Tube (NCT) in Thermal Interface Material for Electronic Packaging Application by Using CFD Software,, Mater. Sci. Forum, vol. 803, p.337–342, Aug. (2014).
DOI: 10.4028/www.scientific.net/msf.803.337
Google Scholar
[2]
M. Mazlan, A. M. M. Al Bakri, R. Wahab, A. K. Zulhisyam, M. R. Mohd Sukhairi, M. H. M. Amini, and A. Mohammad Amizi, Comparison between Thermal Interface Materials Made of Nano Carbon Tube (NCT) with Gad Pad 2500 in Term of Junction Temperature by Using CFD Software, Fluent,, Mater. Sci. Forum, vol. 803, p.243–249, (2014).
DOI: 10.4028/www.scientific.net/msf.803.243
Google Scholar
[3]
X. Han, Y. Wang, and Q. Liang, Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources,, Int. Commun. Heat Mass Transf., vol. 94, no. April, p.71–76, (2018).
DOI: 10.1016/j.icheatmasstransfer.2018.03.017
Google Scholar
[4]
K. P. Drummond, D. Back, M. D. Sinanis, D. B. Janes, D. Peroulis, J. A. Weibel, and S. V. Garimella, A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics,, Int. J. Heat Mass Transf., vol. 117, p.319–330, (2018).
DOI: 10.1016/j.ijheatmasstransfer.2017.10.015
Google Scholar
[5]
A. S. El-Adl, M. G. Mousa, and A. A. Hegazi, Performance analysis of a passively cooled thermoelectric generator,, Energy Convers. Manag., vol. 173, no. August, p.399–411, (2018).
DOI: 10.1016/j.enconman.2018.07.092
Google Scholar
[6]
M. Mazlan, A. Kalam, N. R. Abdullah, H.-S. Loo, A. M. M. Al Bakri, M. S. A. Aziz, C. Y. Khor, M. A. A., and M. . Mohd Sukhairi, The Effect of Gap between Plastic Leaded Chip Carrier ( PLCC ) Using Computational,, Adv. Environ. Biol. J., vol. 7, p.3843–3849, (2013).
Google Scholar
[7]
M. Mazlan, A. Kalam, N. R. Abdullah, H.-S. Loo, A. M. M. Al Bakri, M. S. A. Aziz, C. Y. Khor, M. A. A., and M. . Mohd Sukhairi, Development of Nano-Material ( Nano-Silver ) in Electronic Components Application,, Adv. Environ. Biol., vol. 7, p.3850–3856, (2013).
Google Scholar
[8]
M. Mazlan, A. Rahim, A. M. Mustafa Al Bakri, M. a. Iqbal, W. Razak, and M. S. Salim, A New Invention of Thermal Pad Using Sol-Gel Nanosilver Doped Silica Film in Plastic Leaded Chip Carrier (PLCC) Application by Using Computational Fluid Dynamic Sofrware, CFD Analysis,, Adv. Mater. Res., vol. 795, p.158–163, Sep. (2013).
DOI: 10.4028/www.scientific.net/amr.795.158
Google Scholar
[9]
G. Takács, G. Bognár, E. Bándy, G. Rózsás, and P. G. Szabó, Fabrication and characterization of microscale heat sinks,, Microelectron. Reliab., vol. 79, p.480–487, (2017).
DOI: 10.1016/j.microrel.2017.05.028
Google Scholar
[10]
A. L. Moore and L. Shi, Emerging challenges and materials for thermal management of electronics,, Mater. Today, vol. 17, no. 4, p.163–174, (2014).
Google Scholar
[11]
M. A. Alghoul, S. A. Shahahmadi, B. Yeganeh, N. Asim, A. M. Elbreki, K. Sopian, S. K. Tiong, and N. Amin, A review of thermoelectric power generation systems: Roles of existing test rigs/ prototypes and their associated cooling units on output performance,, Energy Convers. Manag., vol. 174, no. April, p.138–156, (2018).
DOI: 10.1016/j.enconman.2018.08.019
Google Scholar
[12]
T. Cui, Q. Li, Y. Xuan, and P. Zhang, Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials,, Microelectron. Reliab., vol. 55, no. 12, p.2569–2574, (2015).
DOI: 10.1016/j.microrel.2015.07.036
Google Scholar
[13]
S. C. Lin, C. C. M. Ma, W. H. Liao, J. A. Wang, S. J. Zeng, S. Y. Hsu, Y. H. Chen, S. T. Hsiao, T. Y. Cheng, C. W. Lin, and P. Y. Hsiao, Preparation of a graphene–silver nanowire hybrid/silicone rubber composite for thermal interface materials,, J. Taiwan Inst. Chem. Eng., vol. 68, p.396–406, (2016).
DOI: 10.1016/j.jtice.2016.08.009
Google Scholar
[14]
K. M. F. Shahil and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials,, Solid State Commun., vol. 152, no. 15, p.1331–1340, (2012).
DOI: 10.1016/j.ssc.2012.04.034
Google Scholar
[15]
B. Tang, G. Hu, H. Gao, and L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials,, Int. J. Heat Mass Transf., vol. 85, p.420–429, (2015).
DOI: 10.1016/j.ijheatmasstransfer.2015.01.141
Google Scholar
[16]
S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, Solution properties of graphite and graphene,, J. Am. Chem. Soc., vol. 128, no. 24, p.7720–7721, (2006).
DOI: 10.1021/ja060680r
Google Scholar
[17]
H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonson, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Seville, and I. A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide,, J. Phys. Chem. B, vol. 110, no. 17, p.8535–8539, (2006).
DOI: 10.1021/jp060936f
Google Scholar
[18]
M. Mazlan, A. Rahim, A. M. M. A. I. Bakri, A. F. Zubair, Y. M. Najib, and A. B. Azman, Thermal Management of Electronic Components by Using Computational Fluid Dynamic ( CFD ) Software , FLUENT TM in Several Material Applications ( Epoxy , Composite Material & Nano-silver ),, Adv. Mater. Res., vol. 795, no. 1982, p.141–147, (2013).
DOI: 10.4028/www.scientific.net/amr.795.141
Google Scholar
[19]
M. Mazlan, a. Rahim, M. a. Iqbal, A. M. Mustafa Al Bakri, W. Razak, and M. R. Mohd Sukhairi, The Comparison between Four PLCC Packages and Eight PLCC Packages in Personal Computer (PC) Using Computational Fluid Dynamic (CFD), FLUENT SoftwareTM Using Epoxy Moulding Compound Material (EMC),, Adv. Mater. Res., vol. 795, p.174–181, Sep. (2013).
DOI: 10.4028/www.scientific.net/amr.795.174
Google Scholar
[20]
M. Mazlan, a. Rahim, M. a. Iqbal, A. M. Mustafa Al Bakri, W. Razak, and H. M. Nor Hakim, Numerical Investigation of Heat Transfer of Twelve Plastic Leaded Chip Carrier (PLCC) by Using Computational Fluid Dynamic, FLUENTTM Software,, Adv. Mater. Res., vol. 795, p.603–610, Sep. (2013).
DOI: 10.4028/www.scientific.net/amr.795.603
Google Scholar
[21]
T. Baba and A. Ono, Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements,, Meas. Sci. Technol., vol. 12, no. 12, p.2046–2057, (2001).
DOI: 10.1088/0957-0233/12/12/304
Google Scholar
[22]
K. M.F. Shahil and A. A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials,, Nano Letters, vol. 12, no. 2. p.861–867, (2012).
DOI: 10.1021/nl203906r
Google Scholar
[23]
S. H. Xie, Y. Y. Liu, and J. Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes,, Appl. Phys. Lett., vol. 92, no. 24, p.1–3, (2008).
DOI: 10.1063/1.2949074
Google Scholar