The Effect of CuZnFe2O4 on Mechanical Properties and Thermal Conductivity of ABS Manufactured Using 3D Printer

Article Preview

Abstract:

The aim of this study is the development of the ABS-CuZnFe2O4 composites using 3D printer. In this study, the effect of filler loading on the mechanical properties and thermal conductivity is examined. The result shows that at highest filler loading (14 wt%) the tensile strength was improved approximately 98 % while the Young’s modulus increased about 23 % compared to unfilled specimen. Meanwhile, the percentage of elongation decrease approximately about 49 % when filled with 14 wt% of filler. The CuZnFe2O4 filler shows a greater effect on hardness value of the composites around 498 % at maximum filler content. The thermal conductivity of the ABS increased up to 60 % at full capacity of filler.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

148-153

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Agrawal and A. Satapathy, Effect of Al 2 O 3 Addition on Thermo-Electrical Properties of Polymer Composites : An Experimental Investigation,, (2014).

Google Scholar

[2] D. Puryanti, S. H. Ahmad, M. H. Abdullah, and A. N. H. Yusoff, Effect of nickel-cobalt-zinc ferrite filler on magnetic and thermal properties of thermoplastic natural rubber composites,, Int. J. Polym. Mater. Polym. Biomater., vol. 56, no. 3, p.327–338, (2007).

DOI: 10.1080/00914030600865077

Google Scholar

[3] B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher, Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation,, J. Fail. Anal. Prev., vol. 16, no. 3, p.467–481, (2016).

DOI: 10.1007/s11668-016-0113-2

Google Scholar

[4] S. H. Huang, P. Liu, and A. Mokasdar, Additive manufacturing and its societal impact : a literature review,, p.1191–1203, (2013).

Google Scholar

[5] S. Berretta, R. Davies, Y. T. Shyng, Y. Wang, and O. Ghita, Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites,, Polym. Test., vol. 63, p.251–262, (2017).

DOI: 10.1016/j.polymertesting.2017.08.024

Google Scholar

[6] S. Hwang, E. I. Reyes, K. Moon, R. C. Rumpf, and N. A. M. S. O. O. Kim, Thermo-mechanical Characterization of Metal / Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,, J. Electron. Mater., vol. 44, no. 3, p.771–777, (2015).

DOI: 10.1007/s11664-014-3425-6

Google Scholar

[7] J. Koteshwara and R. Abhishek, Enhanced mechanical properties of polyvinyl alcohol composite films containing copper oxide nanoparticles as filler,, Polym. Bull., p.2033–2047, (2015).

DOI: 10.1007/s00289-015-1386-4

Google Scholar

[8] E. S. Z. and C. N. A. J. A.M. Fairuz, S.M. Sapuan, Effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced,, vol. 10, no. 1, p.1931–1942, (2016).

Google Scholar

[9] M. Sudheer, R. Prabhu, K. Raju, and T. Bhat, Effect of Filler Content on the Performance of Epoxy / PTW Composites,, Adv. Mater. Sci. Eng., vol. 2014, p.1–11, (2014).

DOI: 10.1155/2014/970468

Google Scholar

[10] A. Supri and B. Lim, Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene,, J. Phys. Sci., vol. 20, no. 2, p.85–96, (2009).

Google Scholar

[11] R. Hemanth, M. Sekar, B. Suresha, and K. S. V. K. Rao, Effects of Fibers and Fillers on Mechanical Properties of Thermoplastic Composites,, Environ. Heal., vol. 2, p.25–26, (2014).

Google Scholar

[12] S. Kannan and D. Senthilkumaran, Assessment of mechanical properties of Ni-coated ABS plastics using FDM process,, Int. J. Mech. Mechatronics Eng., vol. 14, no. 3, p.30–35, (2014).

Google Scholar

[13] T. Joseph, S. Uma, J. Philip, and M. T. Sebastian, Dielectric , thermal and mechanical properties of Sr 2 ZnSi 2 O 7 based polymer / ceramic composites,, p.1243–1254, (2012).

DOI: 10.1007/s10854-011-0581-9

Google Scholar