[1]
Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–chromium Alloy (800H) during Hot Deformation, Mater. Sci. and Eng. A 585 (2013) 71–85.
DOI: 10.1016/j.msea.2013.07.037
Google Scholar
[2]
L. Tan, J.T. Busby, H.J.M. Chichester, K. Sridharan, T.R. Allen, Thermomechanical Treatment for Improved Neutron Irradiation Resistance of Austenitic Alloy (Fe–21Cr–32Ni), J. of Nuc. Mater. 437(1-3) (2013) 70–74.
DOI: 10.1016/j.jnucmat.2013.01.333
Google Scholar
[3]
P. Xu, L.Y. Zhao, K. Sridharan, T.R. Allen, Oxidation Behavior of Grain Boundary Engineered Alloy 690 in Supercritical Water Environment, J. of Nuc. Mater. 422(1-3) (2012) 143–151.
DOI: 10.1016/j.jnucmat.2011.12.022
Google Scholar
[4]
S. Geng, S. Qi, Q. Zhao, Z. Ma, S. Zhu, F. Wang, Effect of Columnar Nano-Grain Structure on the Oxidation Behavior of Low-Cr Fe-Co-Ni Base Alloy in Air at 800°C, Mater. Let. 80 (2012) 33-36.
DOI: 10.1016/j.matlet.2012.04.029
Google Scholar
[5]
L.M. Wang, Z.B. Wang, K. Lu, Grain Size Effects on the Austenitization Process in a Nanostructured Ferritic Steel, Acta Mater. 59(9) (2011) 3710–3719.
DOI: 10.1016/j.actamat.2011.03.006
Google Scholar
[6]
L. Tan, X. Ren, K, Sridharan, T.R. Allen, Corrosion Behavior of Ni-Base Alloys for Advanced High Temperature Water-Cooled Nuclear Plants, Corros. Sci. 50(11) (2008) 3056–3062.
DOI: 10.1016/j.corsci.2008.08.024
Google Scholar
[7]
D. Cai, Y. Mei, N. Pulin, L. Wenchang, Influence of Solution Treatment Temperature on Mechanical Properties of a Fe–Ni–Cr Alloy, Mater. Let. 57(24-25) (2003) 3805–3809.
DOI: 10.1016/s0167-577x(03)00182-4
Google Scholar
[8]
A. Munitz, S. Salhov, G. Guttmann, N. Deromiw, M. Nahmany, Heat treatment influence on the microstructure & mechanical properties of AlCrFeNiTi0.5 high entropy alloys, Mater. Sci. & Eng. A 742 (2019) 1-14.
DOI: 10.1016/j.msea.2018.10.114
Google Scholar
[9]
A. Munitz, L. Meshi, M.J. Kaufman, Heat treatment's effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy, Mater. Sci. & Eng. A 689 (2017) 384-394.
DOI: 10.1016/j.msea.2017.02.072
Google Scholar
[10]
J.F. Zhang, Y.F. Tu, J. Xu, J.S. Zhang, J.L. Zhang, Effect of solid solution treatment on microstructure of Fe-Ni based high strength low thermal expansion alloy, J. of Iron and Steel 15(1) (2008) 75-78.
DOI: 10.1016/s1006-706x(08)60016-3
Google Scholar
[11]
A.K. Roy, V. Virupaksha, Performance of Alloy 800H for High-Temperature Heat Exchanger Applications, Mater. Sci. & Eng. A 452-453 (2007) 665–672.
DOI: 10.1016/j.msea.2006.11.082
Google Scholar
[12]
Y. He, L. Chen, P. Liaw, R. Mcdaniels, C. Brooks, R. Seeley, D. Klarstrom, Low-Cycle Fatigue Behavior of HAYNES® HR-120® Alloy, Int. J. of Fatigue 24(9) (2002) 931–942.
DOI: 10.1016/s0142-1123(02)00009-9
Google Scholar
[13]
L. Tan, L. Rakotojaona, T.R. Allen, R.K. Nanstad, J.T. Busby, Microstructure Optimization of Austenitic Alloy 800H (Fe–21Cr–32Ni), Mater. Sci. & Eng. A 528(6) (2011) 2755–2761.
DOI: 10.1016/j.msea.2010.12.052
Google Scholar
[14]
R.S. Dutta, Corrosion Aspects of Ni–Cr–Fe Based and Ni–Cu Based Steam Generator Tube Materials, J. of Nuc. Mater. 393(2) (2009) 343–349.
DOI: 10.1016/j.jnucmat.2009.06.020
Google Scholar
[15]
R. Dehmolaei, M. Shamanian, A. Kermanpur, Microstructural Characterization of Dissimilar Welds between Alloy 800 and HP Heat-Resistant Steel, Mater. Charac. 59(10) (2008) 1447–1454.
DOI: 10.1016/j.matchar.2008.01.013
Google Scholar