Crystallization Kinetics and Fragility of Al-Based Amorphous Alloy

Article Preview

Abstract:

Crystallization among amorphous alloy is a crucial study since it generally affects it properties, which may detrimental or beneficial, depending in the intended application of the materials. Controlling crystallization is crucial for obtaining the desired properties. The crystallization study was performed using differential scanning calorimeter (DSC). Samples were heated at heating rate between 20 and 40 K·min-1. Structural evolution during crystallization was studied under X-ray diffraction (XRD). Apparent activation energy for each temperature characteristics was determined using Kissinger’s equation. Local Avrami exponent was investigated using modified Johnson-Mehl-Avrami-Kolgomorov equation. Liquid fragility, which indicates the strength of the glass formation, was predicted using temperature characteristics instead of its viscosity. It was found that upon crystallization both as-cast samples crystallize to cubic-Al, Al2CuMg and Al2Cu and Al3Ni. Alloy with composition of (Al75Cu17Mg8)95Ni5 shows superior activation energy at every temperature characteristics than alloy with composition of Al75Cu10Mg8Ni7. Local Avrami exponent and local activation energy for (Al75Cu17Mg8)95Ni5 show high values at the beginning and at the end of crystallization process. From liquid fragility, it was predicted that the samples are stronger glass former than previous studied Al-amorphous alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

3-8

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V. R. V. Ramanan, D. E. Laughlin, The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials, Scripta Mater. 48(7), (2003) 881–887.

DOI: 10.1016/s1359-6462(02)00597-3

Google Scholar

[2] H. E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[3] J. S. Blázquez, C. F. Conde, A. Conde, Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys, Acta Mater. 53(8), (2005) 2305-2311.

DOI: 10.1016/j.actamat.2005.01.037

Google Scholar

[4] G. H. Li, W. M. Wang, X. F. Bian, J. T. Zhang, R. Li, L. Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/(La0.5Ce0.5)5 amorphous alloys, J. Alloys Compds. 478(1-2), (2009) 745-749.

DOI: 10.1016/j.jallcom.2008.11.142

Google Scholar

[5] Kaikai Song, Xiufang Bian, Xiaoqian Lv, Jing Guo, Guihua Li, Meiting Xie, Compositional dependence of glass-forming ability, medium-range order, thermal stability and liquid fragility of Al–Ni–Ce-based amorphous alloys, Mater. Sci. Engng. A, 506(1–2), (2009) 87-93.

DOI: 10.1016/j.msea.2008.11.043

Google Scholar

[6] B. A. Sun, M. X. Pan, D. Q. Zhao, W. H. Wang, X. K. Xi, M. T. Sandor, Y. Wu, Aluminum-rich bulk metallic glasses, Scripta Mater. 59(10), (2008) 1159-1162.

DOI: 10.1016/j.scriptamat.2008.08.003

Google Scholar

[7] M. Calin, M. Stoica, N. Zheng, X. Wang, S. Scudino, A. Gebert, J. Eckert, Thermal stability and crystallization kinetics of Ti40Zr10Cu34Pd14Sn2 bulk metallic glass, Solid State Phenomena 188, (2012) 3-10.

DOI: 10.4028/www.scientific.net/ssp.188.3

Google Scholar

[8] F. Q. Guo, S. J. Enouf, S. J. Poon, G. J. Shiflet, Formation of ductile Al-based metallic glasses without rare-earth elements, Philos. Mag. Lett. 81, (2010) 203-211.

DOI: 10.1080/09500830010017042

Google Scholar

[9] Y. D. Sun, P. Shen, Z. Q. Li, J. S. Liu, M. Q. Cong, M. Jiang, Kinetics of crystallization process of Mg–Cu–Gd based bulk metallic glasses. J. Non-Cryst. Sol. 358(8), (2012) 1120-1127.

DOI: 10.1016/j.jnoncrysol.2012.02.002

Google Scholar

[10] Dongmei Zhu, Chandra S. Ray, Wancheng Zhou, Delbert E. Day, Glass transition and fragility of Na2O–TeO2 glasses, J. Non-Cryst. Solid 319(3), (2003) 247-255.

DOI: 10.1016/s0022-3093(02)01968-3

Google Scholar

[11] G. J. Fan, J. J. Z. Li, Won-Kyu Rhim, Thermophysical properties of a Cu46Zr42Al7Y5 bulk metallic glass-forming liquid. Appl. Phys. Lett. 88, 221909 (2006).

DOI: 10.1063/1.2208550

Google Scholar

[12] X. F. Bian, B. A. Sun, L. N. Hu, Y. B. Jia, Fragility of superheated melts and glass-forming ability in Al-based alloys. Phys. Lett. A 335(1), (2005) 61-67.

DOI: 10.1016/j.physleta.2004.12.018

Google Scholar

[13] C. A. Angell, Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Sol. 102(1-2), (1988) 205-221.

DOI: 10.1016/0022-3093(88)90133-0

Google Scholar

[14] Baoan Sun, Xiufang Bian, Jing Hu, Tan Mao, Yane Zhang, Fragility of superheated melts in Al–RE (Ce, Nd, Pr) alloy system, Materials Characterization 59(6) (2008) 820-823.

DOI: 10.1016/j.matchar.2007.06.006

Google Scholar

[15] Lina Hu, Xiufang Bian, Weimin Wang, Junyan Zhang, Yubo Jia, Liquid fragility and characteristic of the structure corresponding to the prepeak of AlNiCe amorphous alloys, Acta Mater. 52(16), (2004) 4773-4781.

DOI: 10.1016/j.actamat.2004.06.035

Google Scholar

[16] Junzhe Sun, Xiufang Bian, Yanwen Bai, Effect of minor similar elements substitution on glass forming ability and fragility of Al-Ni-based amorphous alloys, Procedia Engineering 16, (2011) 755-762.

DOI: 10.1016/j.proeng.2011.08.1151

Google Scholar