[1]
M. E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V. R. V. Ramanan, D. E. Laughlin, The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials, Scripta Mater. 48(7), (2003) 881–887.
DOI: 10.1016/s1359-6462(02)00597-3
Google Scholar
[2]
H. E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, (1957) 1702-1706.
DOI: 10.1021/ac60131a045
Google Scholar
[3]
J. S. Blázquez, C. F. Conde, A. Conde, Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys, Acta Mater. 53(8), (2005) 2305-2311.
DOI: 10.1016/j.actamat.2005.01.037
Google Scholar
[4]
G. H. Li, W. M. Wang, X. F. Bian, J. T. Zhang, R. Li, L. Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/(La0.5Ce0.5)5 amorphous alloys, J. Alloys Compds. 478(1-2), (2009) 745-749.
DOI: 10.1016/j.jallcom.2008.11.142
Google Scholar
[5]
Kaikai Song, Xiufang Bian, Xiaoqian Lv, Jing Guo, Guihua Li, Meiting Xie, Compositional dependence of glass-forming ability, medium-range order, thermal stability and liquid fragility of Al–Ni–Ce-based amorphous alloys, Mater. Sci. Engng. A, 506(1–2), (2009) 87-93.
DOI: 10.1016/j.msea.2008.11.043
Google Scholar
[6]
B. A. Sun, M. X. Pan, D. Q. Zhao, W. H. Wang, X. K. Xi, M. T. Sandor, Y. Wu, Aluminum-rich bulk metallic glasses, Scripta Mater. 59(10), (2008) 1159-1162.
DOI: 10.1016/j.scriptamat.2008.08.003
Google Scholar
[7]
M. Calin, M. Stoica, N. Zheng, X. Wang, S. Scudino, A. Gebert, J. Eckert, Thermal stability and crystallization kinetics of Ti40Zr10Cu34Pd14Sn2 bulk metallic glass, Solid State Phenomena 188, (2012) 3-10.
DOI: 10.4028/www.scientific.net/ssp.188.3
Google Scholar
[8]
F. Q. Guo, S. J. Enouf, S. J. Poon, G. J. Shiflet, Formation of ductile Al-based metallic glasses without rare-earth elements, Philos. Mag. Lett. 81, (2010) 203-211.
DOI: 10.1080/09500830010017042
Google Scholar
[9]
Y. D. Sun, P. Shen, Z. Q. Li, J. S. Liu, M. Q. Cong, M. Jiang, Kinetics of crystallization process of Mg–Cu–Gd based bulk metallic glasses. J. Non-Cryst. Sol. 358(8), (2012) 1120-1127.
DOI: 10.1016/j.jnoncrysol.2012.02.002
Google Scholar
[10]
Dongmei Zhu, Chandra S. Ray, Wancheng Zhou, Delbert E. Day, Glass transition and fragility of Na2O–TeO2 glasses, J. Non-Cryst. Solid 319(3), (2003) 247-255.
DOI: 10.1016/s0022-3093(02)01968-3
Google Scholar
[11]
G. J. Fan, J. J. Z. Li, Won-Kyu Rhim, Thermophysical properties of a Cu46Zr42Al7Y5 bulk metallic glass-forming liquid. Appl. Phys. Lett. 88, 221909 (2006).
DOI: 10.1063/1.2208550
Google Scholar
[12]
X. F. Bian, B. A. Sun, L. N. Hu, Y. B. Jia, Fragility of superheated melts and glass-forming ability in Al-based alloys. Phys. Lett. A 335(1), (2005) 61-67.
DOI: 10.1016/j.physleta.2004.12.018
Google Scholar
[13]
C. A. Angell, Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Sol. 102(1-2), (1988) 205-221.
DOI: 10.1016/0022-3093(88)90133-0
Google Scholar
[14]
Baoan Sun, Xiufang Bian, Jing Hu, Tan Mao, Yane Zhang, Fragility of superheated melts in Al–RE (Ce, Nd, Pr) alloy system, Materials Characterization 59(6) (2008) 820-823.
DOI: 10.1016/j.matchar.2007.06.006
Google Scholar
[15]
Lina Hu, Xiufang Bian, Weimin Wang, Junyan Zhang, Yubo Jia, Liquid fragility and characteristic of the structure corresponding to the prepeak of AlNiCe amorphous alloys, Acta Mater. 52(16), (2004) 4773-4781.
DOI: 10.1016/j.actamat.2004.06.035
Google Scholar
[16]
Junzhe Sun, Xiufang Bian, Yanwen Bai, Effect of minor similar elements substitution on glass forming ability and fragility of Al-Ni-based amorphous alloys, Procedia Engineering 16, (2011) 755-762.
DOI: 10.1016/j.proeng.2011.08.1151
Google Scholar