Internal Oxidation Behavior of Fe-33Ni-19Cr Alloy

Article Preview

Abstract:

Fe-33Ni-19Cr alloy is the Ni-based alloy used at high temperature condition due to its excellent ability to form protective oxide layer at high temperature. Fe-33Ni-19Cr alloy was undergo a series of solution treatment process to vary the grain size of the alloy. The Fe-33Ni-19Cr alloy was solution-treated at 3 different temperature, namely 1000°C, 1100°C and 1200°C, for 3 hours soaking time, followed by water quench. The solution-treated alloys were then experienced an isothermal oxidation test at 900°C for 500 hours in laboratory air. The oxidized Fe-33Ni-19Cr alloy were characterized in terms of phase analysis and cross-sectional analysis using XRD and SEM-EDX to investigated the effect of different grain size alloy to the oxidation behavior. The solution treatment process was produced varies grain size of Fe-33Ni-19Cr alloy. The solution-treated Fe-33Ni-19Cr alloy at 1000°C exhibited the fine grain size, while solution-treated Fe-33Ni-19Cr alloy at 1200°C produced a coarse grain size. The oxidized Fe-33Ni-19Cr alloy recorded a formation of several oxide phases consists of Cr-rich oxide, Fe-rich oxide, Ti-rich oxide and spinel oxides structure. The cross-sectional analysis displays a several layer of oxide scales formed on the alloy surface with evidence of internal oxide penetration through the grain boundary area.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

40-45

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. J. Pan, Y. S. Li, Q. Yang, R. F. Feng, A. Hirose, Internal oxidation and phase transformations of multi-phase Fe-Ni-Al and Fe-Ni-Al-Cr alloys induced by KCl corrosion, Corros. Sci. 53(6) (2011) 2115-2121.

DOI: 10.1016/j.corsci.2011.02.034

Google Scholar

[2] Z. Hao, R. Cui, Y., Y. Fan, J. Lin, Diffusion mechanism of tools and simulation in nanoscale cutting the Ni-Fe-Cr series of Nickel-based superalloy, Int. J. of Mech. Sci. 150 (2019) 625-636.

DOI: 10.1016/j.ijmecsci.2018.10.058

Google Scholar

[3] J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak, W. J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-Base alloys in high- and low-pO2 gases, Mater. Sci. and Eng. A 477(1-2) (2008) 259-270.

DOI: 10.1016/j.msea.2007.05.035

Google Scholar

[4] Y. X. Xu, J. T. Lu, W. Y. Li, X. W. Yang, Oxidation behavior of Nb-rich Ni-Cr-Fe alloys: Role and effect of carbides precipitates, Corros. Sci. 140 (2018) 252-259.

DOI: 10.1016/j.corsci.2018.05.040

Google Scholar

[5] Y. X. Xu, J. T. Lu, X. W. Yang, J. B. Yan, W. Y. Li, Effect and role of alloyed Nb on the air oxidation behavior of Ni-Cr-Fe alloys at 1000℃, Corros. Sci. 127 (2017) 10-20.

DOI: 10.1016/j.corsci.2017.08.003

Google Scholar

[6] D. J. Young, High Temperature Oxidation and Corrosion of Metal. Elsevier, (2007).

Google Scholar

[7] G. R. Holcomb, D. E. Alman, The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni–Cr Alloys, Scripta Materialia 54(10) (2006) 1821–1825.

DOI: 10.1016/j.scriptamat.2006.01.026

Google Scholar

[8] D. J. Young, J. Zurek, L. Singheiser, W. J. Quadakkers, Temperature Dependence of Oxide Scale Formation on High-Cr Ferritic Steels in Ar–H2–H2O, Corros. Sci. 53(6) (2011) 2131–2141.

DOI: 10.1016/j.corsci.2011.02.031

Google Scholar

[9] L. Tan, L. Rakotojaona, T. R. Allen, R. K. Nanstad, J. T. Busby, Microstructure Optimization of Austenitic Alloy 800H (Fe–21Cr–32Ni), Mater. Sci. and Eng.: A 528(6) (2011) 2755–2761.

DOI: 10.1016/j.msea.2010.12.052

Google Scholar

[10] N. K. Othman, N. Othman, J. Zhang, D. J. Young, Effects of Water Vapour on Isothermal Oxidation of Chromia-Forming Alloys in Ar/O2 and Ar/H2 Atmospheres, Corros. Sci. 51(12) (2009) 3039–3049.

DOI: 10.1016/j.corsci.2009.08.032

Google Scholar

[11] D. Oquab, N. Xu, D. Monceau, D. J. Young, Subsurface Microstructural Changes in a Cast Heat Resisting Alloy Caused by High Temperature Corrosion, Corros. Sci. 52(1) (2010) 255–262.

DOI: 10.1016/j.corsci.2009.09.014

Google Scholar

[12] G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, T. R. Allen, Corrosion of Austenitic Alloys in High Temperature Supercritical Carbon Dioxide, Corros. Sci. 60 (2012) 246–255.

DOI: 10.1016/j.corsci.2012.03.029

Google Scholar

[13] Z. Yang, G. Xia, M. Walker, C. Wang, J. Stevenson, P. Singh, High Temperature Oxidation/corrosion Behavior of Metals and Alloys under a Hydrogen Gradient, Int. J. of Hyd. Ener. 32(16) (2007) 3770–3777.

DOI: 10.1016/j.ijhydene.2006.08.056

Google Scholar

[14] P. Kofstad, High Temperature Corrosion. London: Elsevier Applied Science, (1988).

Google Scholar

[15] B. Langelier, S. Y. Persaud, R. C. Newman, G. A. Botton, An atom probe tomography study of internal oxidation processes in Alloy 600. Acta Materialia 109 (2016) 55-68.

DOI: 10.1016/j.actamat.2016.02.054

Google Scholar

[16] L. Tan, X, Ren, K. Sridharan, T. R. Allen, Corrosion Behavior of Ni-Base Alloys for Advanced High Temperature Water-Cooled Nuclear Plants, Corros. Sci. 50(11) (2008) 3056–3062.

DOI: 10.1016/j.corsci.2008.08.024

Google Scholar