Electronic Properties of Calcium and Zirconium Co-Doped BaTiO3

Article Preview

Abstract:

Barium titanate (BaTiO3) is a perovskite based oxides with many potential application in electronic devices. From experimental report BaTiO3 has wide energy band gap of about 3.4 eV which by doped with Ca and Zr at A- and B- sites respectively can enhance their piezoelectric properties. Using first principles method within the density functional theory (DFT) as implement in Quantum Espresso (QE) with the plane wave pseudo potential function, the influence of the Ca and Zr doping in BaTiO3 are studied via electronic properties: band structure, total density of states (TDOS) and partial density of states (PDOS). The energy band gap calculated was underestimation which is similar to other DFT work. Two direct band gap where observed in Ba0.875Ca0.125Ti0.875Zr0.125O3 sample at Γ- Γ (2.31 eV) and X- X (2.35 eV) symmetry point.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

308-313

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tariq, M. I. Jamil, A. Sharif, S. M. Ramay, H. Ahmad, N. ul Qamar and B. Tahir, Exploring structural, electronic and thermo-elastic properties of metallic AMoO3 (A= Pb, Ba, Sr) molybdates, Applied Physics A 124.1 (2018) 44.

DOI: 10.1007/s00339-017-1452-x

Google Scholar

[2] C. Bhandari and W. R Lambrecht, Instability of the layered orthorhombic post-perovskite phase of SrTiO3 and other candidate orthorhombic phases under pressure, Solid State Commun. 274 (2018) 27-30.

DOI: 10.1016/j.ssc.2018.02.006

Google Scholar

[3] P. Kanhere and Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules 19.12 (2014) 19995-20022.

DOI: 10.3390/molecules191219995

Google Scholar

[4] C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. adv. 5.2 (2019) eaav0693.

DOI: 10.1126/sciadv.aav0693

Google Scholar

[5] C. B. Samantaray, H. Sim and H. Hwang, The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations, Microelect. J. 36.8 (2005) 725-728.

DOI: 10.1016/j.mejo.2005.03.001

Google Scholar

[6] C. Bhandari and W. R. Lambrecht, Instability of the layered orthorhombic post-perovskite phase of SrTiO3 and other candidate orthorhombic phases under pressure, Solid State Communications 274 (2018): 27-30.

DOI: 10.1016/j.ssc.2018.02.006

Google Scholar

[7] J. Ji, J. Yue, S. Zhou, Y. Tian, J. Zhang, F. Ling, H. Wang and J. Yao, Electrically tuned transmission and dielectric properties of illuminated and non-illuminated barium titanate thin film in terahertz regime, J. of Alloys and Compounds 747 (2018) 629-635.

DOI: 10.1016/j.jallcom.2018.02.002

Google Scholar

[8] H. Jiao, K. Zhao, L. Ma, T. Bian, Y. Ma and Y. Tang, Preparation, electrical property and periodic DFT calculation of barium titanate/hydroxyapatite rod-like nanocomposite materials, Mat. Sci. and Eng. B 229 (2018) 184-192.

DOI: 10.1016/j.mseb.2017.12.035

Google Scholar

[9] H. Borkar, V. Rao, M. Tomar, V. Gupta and A. Kumar, Near room temperature bismuth and lithium co-substituted BaTiO3 relaxor ferroelectrics family, J. of Alloys and Compounds 737 (2018) 821-828.

DOI: 10.1016/j.jallcom.2017.12.170

Google Scholar

[10] R. Saravanan, Titanate Based Ceramic Dielectric Materials, Materials Research Forum LLC, (2018).

Google Scholar

[11] H. H. Pan, D. H. Lin and R. H. Yang, R. H, High piezoelectric and dielectric properties of 0–3 PZT/cement composites by temperature treatment, Cement and Concrete Composites 72 (2016) 1-8.

DOI: 10.1016/j.cemconcomp.2016.05.025

Google Scholar

[12] F. Wang, H. Wang, Y. Song and H. Sun, High piezoelectricity 0–3 cement-based piezoelectric composites, Materials letters 76 (2012) 208-210.

DOI: 10.1016/j.matlet.2012.02.094

Google Scholar

[13] R. Rianyoi, R. Potong, A. Ngamjarurojana and A. Chaipanich, Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94 (Bi 0.5 Na 0.5) TiO3–0.06 BaTiO3 piezoelectric ceramic composites, J. of materials sci. 53.1 (2018) 345-355.

DOI: 10.1007/s10853-017-1533-4

Google Scholar

[14] G. Pilania, K. Slenes and R. Ramprasad, First principles study of the interface between silicone and undoped/doped BaTiO3, Journal of Applied Physics 113.6 (2013) 064316.

DOI: 10.1063/1.4791755

Google Scholar

[15] S. Saha, T. P. Sinha and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Physical Rev. B 62.13 (2000) 8828.

Google Scholar

[16] S. Sasikumar, R. Saravanan and S. Saravanakumar, Investigation on charge density, piezoelectric and ferroelectric properties of (1− x) Ba (Zr 0.2 Ti 0.8) O 3–x (Ba 0.7 Ca 0.3) TiO 3 lead-free piezoceramics, J. of Materials Sci.: Materials in Electronics 29.2 (2018) 1198-1208.

DOI: 10.1007/s10854-017-8022-z

Google Scholar

[17] G. N. Bhargavi, A. Khare, T. Badapanda, P. K. Ray and N. Brahme, Influence of Eu doping on the structural, electrical and optical behavior of Barium Zirconium Titanate ceramic, Ceramics International 44.2 (2018): 1817-1825.

DOI: 10.1016/j.ceramint.2017.10.116

Google Scholar

[18] S. Hajra, S. Sahoo, M. De, P. K. Rout, H. S. Tewari and R. N. P Choudhary, Structural and electrical characteristics of barium modified bismuth-sodium titanate (Bi 0.49 Na 0.49 Ba 0.02) TiO 3, J. of Materials Science: Materials in Electronics 29.2 (2018): 1463-1472.

DOI: 10.1007/s10854-017-8054-4

Google Scholar

[19] F. D. Morrison, A. M. Coats, D. C. Sinclair and A. R. West, Charge compensation mechanisms in La-doped BaTiO3, J. of Electroceramics 6.3 (2001): 219-232.

Google Scholar

[20] A. Srinivas, R. V. Krishnaiah, V. L. Niranjani, S. V. Kamat, T. Karthik and S. Asthana, Ferroelectric, piezoelectric and mechanical properties in lead free (0.5) Ba (Zr0. 2Ti0.8) O3–(0.5)(Ba0. 7Ca0. 3) TiO3 electroceramics, Ceramics International 41.2 (2015): 1980-1985.

DOI: 10.1016/j.ceramint.2014.08.127

Google Scholar

[21] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo and A. Dal Corso, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. of physics: Condensed matter 21.46 (2017): 465901.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[22] A. Elbasset, S. Sayouri, F. Abdi, T. Lamcharfi and L. Mrharrab, Effect of Sr addition on piezoelectric properties and the transition temperature of BaTiO3, Glass Physics and Chemistry 43.1 (2017): 91-97.

DOI: 10.1134/s1087659617010059

Google Scholar

[23] S. H. Wemple, Polarization Fluctuations and the Optical-Absorption Edge in BaTiO3, Phys. Review B 2.7 (1970): 2679.

Google Scholar

[24] N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. review B 43.3 (1991): (1993).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[25] M. P. Teter, M. C. Payne and D. C. Allan, Solution of Schrödinger's equation for large systems, Physical Review B 40.18 (1989): 12255.

DOI: 10.1103/physrevb.40.12255

Google Scholar

[26] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical review B 13.12 (1976): 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[27] R. Ahuja, O. Eriksson and B. Johansson, Electronic and optical properties of BaTiO3 and SrTiO3, J. of Applied Physics 90.4 (2001): 1854-1859.

DOI: 10.1063/1.1384862

Google Scholar

[28] C. Sidar, M. N. Tripathi and P. K. Bajpai, Effect of Sr-doping on the band structure of BaTiO3 through density functional theoretical calculations, Comp. Condensed Matter 11 (2017): 27-32.

DOI: 10.1016/j.cocom.2017.03.005

Google Scholar

[29] L. G. Devi and P. M. Nithya, Preparation, characterization and photocatalytic activity of BaTiF6 and BaTiO3: A comparative study, J. of environ. chemical engineering 6.3 (2018): 3565-3573.

Google Scholar

[30] M. F. M. Taib, N. H. Hussin, M. H. Samat, O. H., Hassan and M. Z. A. Yahya, Structural, Electronic and Optical Properties of BaTiO3 and BaFeO3 From First Principles LDA+ U Study, Int. J. Electroactive Mater 4 (2016): 14-17.

Google Scholar

[31] F. L. Battye, H. Höchst and A. Goldmann, Photoelectron studies of the BaTiO3 and SrTiO3 valence states, Solid State Comm. 19.3 (1976): 269-271.

DOI: 10.1016/0038-1098(76)90866-8

Google Scholar

[32] D. Bagayoko, G. L. Zhao, J. D. Fan and J. T. Wang, Ab initio calculations of the electronic structure and optical properties of ferroelectric tetragonal, J. of Physics: Condensed Matter 10.25 (1998): 5645.

DOI: 10.1088/0953-8984/10/25/014

Google Scholar

[33] C. Sidar, M. N. Tripathi and P. K. Bajpai, Effect of Sr-doping on the band structure of BaTiO3 through density functional theoretical calculations, Comp. Condensed Matter 11 (2017): 27-32.

DOI: 10.1016/j.cocom.2017.03.005

Google Scholar