Near Surface Studies on the Role of Graphene Oxide in the Carbon Species Activities in IT-SOFC Cathode Materials

Article Preview

Abstract:

Active roles of carbon species in solid oxide fuel cell (SOFC) cathode was simulated by adding graphene oxide (GO) into Ba0.5Sr0.5Co0.2Fe0.8 (BSCF) materials prepared by sol-gel method. The mixture was heated up to intermediate temperature SOFC range (650 - 850°C) for a period of 5 hours. A depth-profiling measurement by x-ray photoelectron spectroscopy (XPS) technique was carried out to analyse the carbon species activities at near surface of BSCF cathode. A depth-profiling analysis indicated that the graphene oxide bond components are retained under the cathode surface and does not affected the formation of carbonate phases in BSCF cathode.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

321-326

Citation:

Online since:

September 2020

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peng Qiu, Ao Wang, Jin Li, Zongbao Li, Lichao Jia, Bo Chi, Jian Pu, Jian Li, Journal of Power Sources 327 (2016) 408-413.

Google Scholar

[2] Yubo Chen, Wei Zhou, Dong Ding , Meilin Liu , Francesco Ciucci , Moses Tade, and Zongping Shao Adv. Energy Mater. 2015, 1500537.

Google Scholar

[3] Qing Ni, Han Chen, Lin Ge, Shancheng Yu, Lucun Guo, Journal of Power Sources 349 (2017) 130-137.

Google Scholar

[4] Abdullah Abdul Samat, Wan Nor Anasuhah Wan Yusoff, Nurul Akidah Baharuddin, Mahendra Rao Somalu, Andanastuti Muchtar, Nafisah Osman Processing and Application of Ceramics 12 (2018) 277–286.

DOI: 10.1088/1755-1315/268/1/012139

Google Scholar

[5] Laura Almar, Heike Störmer, Matthias Meffert, Julian Szász, Florian Wankmüller, Dagmar Gerthsen, and Ellen Ivers-Tiffée, ACS Appl. Energy Mater. 2018, 1, 1316−1327.

Google Scholar

[6] N.A. Mohd Noor, S.K. Kamarudin, M. Darus, N.F. Diyana M.Yunos and M.A. Idris, Solid State Phenomena (2018) 280, 65-70.

DOI: 10.4028/www.scientific.net/ssp.280.65

Google Scholar

[7] Vyshnavi Narayanan, Klaartje de Buysser *, Els Bruneel and Isabel van Driessche, Materials 2012, 5, 364-376.

Google Scholar

[8] Raoul Blume, Dirk Rosenthal, Jean-Philippe Tessonnier, Henan Li, Axel Knop-Gericke, and Robert Schlçgl, ChemCatChem 2015, 7, 2871 – 2881.

DOI: 10.1002/cctc.201500344

Google Scholar

[9] Paul S.Bagus, EugeneS.Ilton, ConnieJ.Nelin, Surface Science Reports 68 (2013) 273–304.

Google Scholar

[10] Farhanini Yusoff, Azizan Aziz, Norita Mohamed, Sulaiman Ab Ghani Int. J. Electrochem. Sci., 8 (2013) 10672 – 10687.

Google Scholar

[11] Saša Zeljkovi´c, Jin Miyawaki, Dragoljub Vrankovi´c, Elena Tervoort, Roland Hauert, Toru Kotegawa, Toni Ivas, Processing and Application of Ceramics 12 [4] (2018) 342-349.

DOI: 10.2298/pac1804342z

Google Scholar

[12] Yu, H. et al. High-efficient Synthesis of GO Based on Improved Hummers Method. Sci. Rep. 6, 36143.

Google Scholar

[13] Andrej Furlan, Jun Lu, Lars Hultman, Ulf Jansson and Martin Magnuson, Journal of Physics: Condensed Matter 26, 415501 (2014).

DOI: 10.1088/0953-8984/26/41/415501

Google Scholar

[14] G. Greczynski⁎, L. Hultman, Progress in Materials Science 107 (2020) 100591.

Google Scholar

[15] Ayaka Fujimoto, Yasuhiro Yamada, Michio Koinuma, and Satoshi Sato, Anal. Chem. 2016, 88, 6110−6114.

Google Scholar

[16] Vander Wal, R.L., Bryg, V.M., Huang, C.-H., Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III, Atmospheric Environment (2016),.

DOI: 10.1016/j.atmosenv.2016.05.039

Google Scholar

[17] B. Lesiak, L. Kövér, J. Tóth, J. Zemek, P. Jiricek, A. Kromka, N. Rangam, Applied Surface Science 452 (2018) 223–231.

DOI: 10.1016/j.apsusc.2018.04.269

Google Scholar