Effect Band Gap of Chitosan Film in Converting Water Vapour Into Electrical Current

Article Preview

Abstract:

In this study, a device called a water vapour cell has been successfully fabricated. A water vapour cell consists of patterned silver on the top layer, chitosan film in the middle, titanium in the bottom layer and isolator substrate as the cover. Chitosan films utilized as a conversion material which works based on direct chemical interactions between chitosan film surface and water vapour to generate electrical current. The chitosan concentration was varied from 0%, 1%, 2%, 3%, 3.25%, 3.5%, 3.75%, 4%, 4.25% and 4.5% (w/v), respectively. The energy conversion properties of a water vapour cell were conducted by exposing water vapour into a water vapour cell. The water vapour was represented by a percentage of relative humidity (RH) which varied from 30% - 90% at 27 °C until 24 hours. It was proven that no electrical current was generated by water vapour cell with 0% chitosan film, while the other concentrations generated stable electrical current once exposed to ≤70% RH. However, the electrical current started to increase and achieved a stable state after 13-11 hours when exposed to ≥70% RH. The highest electrical current was generated 15.31 microampere (μA) achieved by 4% chitosan film under 90% RH exposure. The optical band gap and SEM characterization result indicated that the addition of chitosan concentration higher or equal to 4.25% showed the presence of aggregates which decreased chitosan film band gap into 3.22 and 3.53 eV. Therefore, the higher than 4% concentrations of chitosan have an effect on the physical structure which decreasing the band gap and electrical current.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

445-452

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Lojpur, J. Krstić, Z. Kačarević-Popović, N. Filipović and I. L. Validžić. Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. Environ. Chem. Lett. 16, 659-664 (2018).

DOI: 10.1007/s10311-017-0702-7

Google Scholar

[2] R. T. Magal and V. Selvaraj. A comparative study for the electrocatalytic oxidation of alcohol on Pt-Au nanoparticle-supported copolymer-grafted graphene oxide composite for fuel cell application. Ionics. 24 (2018) 1439-1450.

DOI: 10.1007/s11581-017-2295-3

Google Scholar

[3] D. Zheng, A. T. Eseye, J. Zhang and H. Li. Short-term wind power forecasting using a double-stage hierarchical ANFIS approach for energy management in microgrid. Protection and Control of Modern Power Systems. 2 (2017) 13-23.

DOI: 10.1186/s41601-017-0041-5

Google Scholar

[4] N. Sekar and R. P. Ramasamy. Recent advances in photosynthetic energy conversion. J Photoch Photobio C. 22 (2015) 19-33.

Google Scholar

[5] F. H. Sobrino, C. R. Monroy and J. L. H. Pérez. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renew. Sust. Energ. Rev. 14 (2010) 772-780.

DOI: 10.1016/j.rser.2009.10.021

Google Scholar

[6] S. Wang and S. Wang. Impacts of wind energy on environment: A review. Renew. Sust. Energ. Revi. 49 (2015) 437-443.

Google Scholar

[7] Z. Guo, H. Liu, X. Chen, X. Ji and P. Li. Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorg. Med. Chem. Lett. 16 (2006) 6348-6350.

DOI: 10.1016/j.bmcl.2006.09.009

Google Scholar

[8] K Kurita. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 26 (9) (2001) 1921-1971.

Google Scholar

[9] K. Pandiselvi and S. Thambidurai. Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics. 20 (2014) 551-561.

DOI: 10.1007/s11581-013-1020-0

Google Scholar

[10] F. Liu, B. Qin, L. He and R. Song. Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydr. Polym. 78 (2009) 46-150.

DOI: 10.1016/j.carbpol.2009.03.021

Google Scholar

[11] Y. Pan, T. Wu, H. Bao and L. Li. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 83 (2011) 1908-1915.

DOI: 10.1016/j.carbpol.2010.10.054

Google Scholar

[12] M. H. Buraidah, L. P. Teo, S. R. Majid, R. Yahya, R. M. Taha and A. K. Arof. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells. Int. J. Photoenergy. 2010 (2010).

DOI: 10.1155/2010/805836

Google Scholar

[13] G. Sun, B. Li, J. Ran, X. Shen and H. Tong. Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochim. Acta. 171 (2015) 13-22.

DOI: 10.1016/j.electacta.2015.05.009

Google Scholar

[14] J. Ma and Y. Sahai. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym. 92 (2013) 955-975.

DOI: 10.1016/j.carbpol.2012.10.015

Google Scholar

[15] T. I. Nasution, M. Balyan and I. Nainggolan. New Application of Chitosan Film as a Water Vapor Cell. Key Eng. Mater. 744 (2017) 339-345.

DOI: 10.4028/www.scientific.net/kem.744.339

Google Scholar

[16] T. I. Nasution, M. Balyan and I. Nainggolan, S. R. E. Putri, A. Putra. Improved Electrical Power of Chitosan Film in Converting Water Vapour to Electrical Power by Adding Lithium Chloride. Adv Sci Lett. 24 (2018) 9017-9021.

DOI: 10.1166/asl.2018.12397

Google Scholar

[17] T. I. Nasution, M. Balyan and I. Nainggolan. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose. IOP Conf. Ser.: Mater. Sci. Eng. 309, (2018) 012-092.

DOI: 10.1088/1757-899x/309/1/012092

Google Scholar

[18] Balyan, M., Nasution, T.I., Nainggolan, I. et al. Energy harvesting properties of chitosan film in harvesting water vapour into electrical energy. J Mater Sci: Mater Electron 30, (2019) 16275–16286.

DOI: 10.1007/s10854-019-01998-3

Google Scholar

[19] A. Ghosh, M. Azam Ali and R. Walls. Modification of microstructural morphology and physical performance of chitosan films. Int. J. Biol. Macromol. 46 (2010) 179-186.

DOI: 10.1016/j.ijbiomac.2009.11.006

Google Scholar

[20] L. Pradipkanti and D. K. Satapathy. Water desorption from a confined biopolymer. Soft Matter. 14 (2018) 2163-2169.

DOI: 10.1039/c7sm02332d

Google Scholar

[21] S. Begum, R. Pandian, V. Aswal and R. Ramasamy. Chitosan–Gold–Lithium Nanocomposites as Solid Polymer Electrolyte. J. Nanosci. Nanotechnol. 14 (2014) 5761-5773.

DOI: 10.1166/jnn.2014.8994

Google Scholar

[22] M. Rinaudo. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7) (2006) 603-632.

Google Scholar

[23] S. Sreekumar, F. M. Goycoolea, B. M. Moerschbacher and G. R. Rivera-Rodriguez. Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports. 8(1) (2018) 46-95.

DOI: 10.1038/s41598-018-23064-4

Google Scholar

[24] M. O. Tuhin, N. Rahman, M. E. Haque, R. A. Khan, N. C. Dafader, R. Islam, M. Nurnabi and W. Tonny. Modification of mechanical and thermal property of chitosan–starch blend films. Radiat. Phys. Chem. 81 (2012) 1659-1668.

DOI: 10.1016/j.radphyschem.2012.04.015

Google Scholar

[25] Z.H. Zhang, Z. Han, X.A. Zeng, X.Y. Xiong and Y.J. Liu. Enhancing mechanical properties of chitosan films via modification with vanillin. Int. J. Biol. Macromol. 81 (2015) 638-643.

DOI: 10.1016/j.ijbiomac.2015.08.042

Google Scholar

[26] A. Havare, S. Okur and G. Sanli. Humidity Sensing Properties of Chitosan by Using Quartz Crystal Microbalance Method. Sensor Lett. 10 (2012) 906-910.

DOI: 10.1166/sl.2012.2585

Google Scholar

[27] J. Zou, K. Zhang and Q. Zhang. Giant Humidity Response Using a Chitosan-Based Protonic Conductive Sensor. IEEE Sens. J. 16 (2016) 8884-8889.

DOI: 10.1109/jsen.2016.2616484

Google Scholar