[1]
V. Lojpur, J. Krstić, Z. Kačarević-Popović, N. Filipović and I. L. Validžić. Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. Environ. Chem. Lett. 16, 659-664 (2018).
DOI: 10.1007/s10311-017-0702-7
Google Scholar
[2]
R. T. Magal and V. Selvaraj. A comparative study for the electrocatalytic oxidation of alcohol on Pt-Au nanoparticle-supported copolymer-grafted graphene oxide composite for fuel cell application. Ionics. 24 (2018) 1439-1450.
DOI: 10.1007/s11581-017-2295-3
Google Scholar
[3]
D. Zheng, A. T. Eseye, J. Zhang and H. Li. Short-term wind power forecasting using a double-stage hierarchical ANFIS approach for energy management in microgrid. Protection and Control of Modern Power Systems. 2 (2017) 13-23.
DOI: 10.1186/s41601-017-0041-5
Google Scholar
[4]
N. Sekar and R. P. Ramasamy. Recent advances in photosynthetic energy conversion. J Photoch Photobio C. 22 (2015) 19-33.
Google Scholar
[5]
F. H. Sobrino, C. R. Monroy and J. L. H. Pérez. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renew. Sust. Energ. Rev. 14 (2010) 772-780.
DOI: 10.1016/j.rser.2009.10.021
Google Scholar
[6]
S. Wang and S. Wang. Impacts of wind energy on environment: A review. Renew. Sust. Energ. Revi. 49 (2015) 437-443.
Google Scholar
[7]
Z. Guo, H. Liu, X. Chen, X. Ji and P. Li. Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorg. Med. Chem. Lett. 16 (2006) 6348-6350.
DOI: 10.1016/j.bmcl.2006.09.009
Google Scholar
[8]
K Kurita. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 26 (9) (2001) 1921-1971.
Google Scholar
[9]
K. Pandiselvi and S. Thambidurai. Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics. 20 (2014) 551-561.
DOI: 10.1007/s11581-013-1020-0
Google Scholar
[10]
F. Liu, B. Qin, L. He and R. Song. Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydr. Polym. 78 (2009) 46-150.
DOI: 10.1016/j.carbpol.2009.03.021
Google Scholar
[11]
Y. Pan, T. Wu, H. Bao and L. Li. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 83 (2011) 1908-1915.
DOI: 10.1016/j.carbpol.2010.10.054
Google Scholar
[12]
M. H. Buraidah, L. P. Teo, S. R. Majid, R. Yahya, R. M. Taha and A. K. Arof. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells. Int. J. Photoenergy. 2010 (2010).
DOI: 10.1155/2010/805836
Google Scholar
[13]
G. Sun, B. Li, J. Ran, X. Shen and H. Tong. Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochim. Acta. 171 (2015) 13-22.
DOI: 10.1016/j.electacta.2015.05.009
Google Scholar
[14]
J. Ma and Y. Sahai. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym. 92 (2013) 955-975.
DOI: 10.1016/j.carbpol.2012.10.015
Google Scholar
[15]
T. I. Nasution, M. Balyan and I. Nainggolan. New Application of Chitosan Film as a Water Vapor Cell. Key Eng. Mater. 744 (2017) 339-345.
DOI: 10.4028/www.scientific.net/kem.744.339
Google Scholar
[16]
T. I. Nasution, M. Balyan and I. Nainggolan, S. R. E. Putri, A. Putra. Improved Electrical Power of Chitosan Film in Converting Water Vapour to Electrical Power by Adding Lithium Chloride. Adv Sci Lett. 24 (2018) 9017-9021.
DOI: 10.1166/asl.2018.12397
Google Scholar
[17]
T. I. Nasution, M. Balyan and I. Nainggolan. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose. IOP Conf. Ser.: Mater. Sci. Eng. 309, (2018) 012-092.
DOI: 10.1088/1757-899x/309/1/012092
Google Scholar
[18]
Balyan, M., Nasution, T.I., Nainggolan, I. et al. Energy harvesting properties of chitosan film in harvesting water vapour into electrical energy. J Mater Sci: Mater Electron 30, (2019) 16275–16286.
DOI: 10.1007/s10854-019-01998-3
Google Scholar
[19]
A. Ghosh, M. Azam Ali and R. Walls. Modification of microstructural morphology and physical performance of chitosan films. Int. J. Biol. Macromol. 46 (2010) 179-186.
DOI: 10.1016/j.ijbiomac.2009.11.006
Google Scholar
[20]
L. Pradipkanti and D. K. Satapathy. Water desorption from a confined biopolymer. Soft Matter. 14 (2018) 2163-2169.
DOI: 10.1039/c7sm02332d
Google Scholar
[21]
S. Begum, R. Pandian, V. Aswal and R. Ramasamy. Chitosan–Gold–Lithium Nanocomposites as Solid Polymer Electrolyte. J. Nanosci. Nanotechnol. 14 (2014) 5761-5773.
DOI: 10.1166/jnn.2014.8994
Google Scholar
[22]
M. Rinaudo. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7) (2006) 603-632.
Google Scholar
[23]
S. Sreekumar, F. M. Goycoolea, B. M. Moerschbacher and G. R. Rivera-Rodriguez. Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports. 8(1) (2018) 46-95.
DOI: 10.1038/s41598-018-23064-4
Google Scholar
[24]
M. O. Tuhin, N. Rahman, M. E. Haque, R. A. Khan, N. C. Dafader, R. Islam, M. Nurnabi and W. Tonny. Modification of mechanical and thermal property of chitosan–starch blend films. Radiat. Phys. Chem. 81 (2012) 1659-1668.
DOI: 10.1016/j.radphyschem.2012.04.015
Google Scholar
[25]
Z.H. Zhang, Z. Han, X.A. Zeng, X.Y. Xiong and Y.J. Liu. Enhancing mechanical properties of chitosan films via modification with vanillin. Int. J. Biol. Macromol. 81 (2015) 638-643.
DOI: 10.1016/j.ijbiomac.2015.08.042
Google Scholar
[26]
A. Havare, S. Okur and G. Sanli. Humidity Sensing Properties of Chitosan by Using Quartz Crystal Microbalance Method. Sensor Lett. 10 (2012) 906-910.
DOI: 10.1166/sl.2012.2585
Google Scholar
[27]
J. Zou, K. Zhang and Q. Zhang. Giant Humidity Response Using a Chitosan-Based Protonic Conductive Sensor. IEEE Sens. J. 16 (2016) 8884-8889.
DOI: 10.1109/jsen.2016.2616484
Google Scholar