[1]
R. Poblete, I. Oller , M. Maldonado, Y. Luna & E. Cortes. Cost estimation of COD and color removal from landfill leachate using combined coffee waste based activated carbon with advanced oxidation. Journal of Environmental Chemical Engineering [online]. Vol.5(1)(2016) pp.114-121.
DOI: 10.1016/j.jece.2016.11.023
Google Scholar
[2]
N.S. Azmi & K.F.M. Yunos. Wastewater Treatment of Palm Oil Mill Effluent (POME) by Ultrafiltration Membrane Separation Technique Coupled with Adsorption Treatment as Pre-treatment. Agriculture and Agricultural Science. [online]. Procedia 2(2014) pp.257-264.
DOI: 10.1016/j.aaspro.2014.11.037
Google Scholar
[3]
M. Ahiduzzaman & A.K.M. Sadrul Islam. Evaluation of Characteristics of Activated Carbon from Rice Husk Impregnated with Zinc Chloride and PhosphoricAcid. American Journal of Physical Chemistry. [online]. Vol.5(5) (2016) pp.94-98.
DOI: 10.11648/j.ajpc.20160505.12
Google Scholar
[4]
H.Y. Xia, J.Wu, C. Srinivasakanman, J.H. Peng & L.B. Zhang. Effect of activating agent on the preparation of bamboo based high surface area activated carbon by microwave. High Temperature Material and Processes. (2015). [online] .
DOI: 10.1515/htmp-2014-0228
Google Scholar
[5]
A.G. Zaidi, M.S. Yusoff, N.Q. Zaman, M.F.M.A Zamri & J. Anda. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Management. (2017). [online]. http://dx.doi.org/10.1016/j.wasman.2017.02.026.
DOI: 10.1016/j.wasman.2017.02.026
Google Scholar
[6]
W. Azlina, W. Abdul, K. Ghani, A. Mohd, R.T. Bachmann, Y.H. Taufiq-yap, U. Rashid & A.H. Al-muhtaseb. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Industrial Crops & Products. (2013). [online]. Vol. 44 p.18–24.
DOI: 10.1016/j.indcrop.2012.10.017
Google Scholar
[7]
N.S. Nasri, H. Basri, A. Garba & U.D. Hamza. Synthesis and characterization of low-cost porous carbon from palm oil shell via K2CO3 chemical activation process. Applied Mechanics and Materials. [online]. Vol.735(2015).p.36–40.
DOI: 10.4028/www.scientific.net/amm.735.36
Google Scholar
[8]
K. Kenes, O. Terdos, M. Zulkhair & D. Yerlan. Study on the effectiveness of thermally treated rice husks for petroleum adsorption. Journal of Non-Crystalline Solids. [online]. Vol. 358(2012) pp.2964-2969.
DOI: 10.1016/j.jnoncrysol.2012.07.017
Google Scholar
[9]
S. Tazibet, Y. Boucheffa, P. Lodewyckx, L.F. Velasco & Y. Boutillara. Evidence for the effect of the cooling down step on activated carbon adsorption properties. Microporous and Mesoporous Materials. [online] Vol. 21(2016) pp.67-75.
DOI: 10.1016/j.micromeso.2015.09.016
Google Scholar
[10]
A. Kumar & H.M. Jena. High surface area microporous activated carbon prepared from foxnut (Euryale Ferox) shell by zinc chloride activation. Applied Surface Science. [online]. Vol. 356(2015) pp.753-761.
DOI: 10.1016/j.apsusc.2015.08.074
Google Scholar
[11]
T. Karanfil, M. Kitis, J.E. Kilduff & A. Wighton.. Role of carbon surface chemistry and pore structure on the adsorption of DOM. Environment Science Technology. [online]. Vol. 33 3225. (1999).
Google Scholar
[12]
N.V. Beck, S.E. Meech, P.R. Norman & L.A. Pears. Characterisation of surface oxides on carbon and their influence on dynamic adsorption. Carbon. [online]. Vol. 40(4) (2002) pp.531-540.
DOI: 10.1016/s0008-6223(01)00144-0
Google Scholar