[1]
F. Heidari, M. Razavi, M. Ali, and A. Zamani, A comparison between the properties of natural hydroxyapatite produced by cold isostatic pressing and spark plasma sintering techniques, J. Aust. Ceram. Soc. 54, (2017) 337–344.
DOI: 10.1007/s41779-017-0158-z
Google Scholar
[2]
B. Komur, T. Lohse, H. M. Can, G. Khalilova, and Z. N. Geçimli, Fabrication of naturel pumice / hydroxyapatite composite for biomedical engineering, Biomed. Eng. Online, (2016) 1–20.
DOI: 10.1186/s12938-016-0203-0
Google Scholar
[3]
M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci. 49, (2014) 1461–1475.
DOI: 10.1007/s10853-013-7864-x
Google Scholar
[4]
M. A. Roudan et al., Processing Research Thermal phase stability and properties of hydroxyapatite derived from bio- waste eggshells, J. Ceram. Process. Res. 18, (2017) 69–72.
Google Scholar
[5]
M. Zulhasif et al., Results in Physics Crystallization behavior of low-cost biphasic hydroxyapatite / β -tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources, Results Phys.12, (2019) 638–644.
DOI: 10.1016/j.rinp.2018.12.025
Google Scholar
[6]
H. L. Jaber, A. S. Hammood, and N. Parvin, Synthesis and characterization of hydroxyapatite powder from natural Camelus bone, J. Aust. Ceram. Soc. 54 (2018) 1–10.
DOI: 10.1007/s41779-017-0120-0
Google Scholar
[7]
M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. de Carlos, and B. León, Biological hydroxyapatite obtained from fish bones, Mater. Sci. Eng. C, 32, (2012) 478–486.
DOI: 10.1016/j.msec.2011.11.021
Google Scholar
[8]
N. A. M. Barakat, M. S. Khil, A. M. Omran, F. A. Sheikh, and H. Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J. Mater. Process. Technol., 209, (2009) 3408–3415.
DOI: 10.1016/j.jmatprotec.2008.07.040
Google Scholar
[9]
C. Rey, C. Combes, C. Drouet, and D. Grossin, Bioactive Ceramics : Physical Chemistry. Elsevier Ltd., (2011).
DOI: 10.1016/b978-0-08-055294-1.00178-1
Google Scholar
[10]
N. A. S. Mohd Pu'ad, P. Koshy, H. Z. Abdullah, M. I. Idris, and T. C. Lee, Syntheses of hydroxyapatite from natural sources, Heliyon, 5, (2019) e01588.
DOI: 10.1016/j.heliyon.2019.e01588
Google Scholar
[11]
M. J. Rastgoo, M. Razavi, E. Salahi, and I. Mobasherpour, Sintering behaviour and interfacial toughness of HAp/TCP coatings on HAp/Ti nanocomposite substrates, Bull. Mater. Sci.42,(2019) 13.
DOI: 10.1007/s12034-018-1698-8
Google Scholar
[12]
J. Venkatesan, Z. J. Qian, B. Ryu, N. V. Thomas, and S. K. Kim, A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone, Biomed. Mater. 6, (2011)1–12.
DOI: 10.1088/1748-6041/6/3/035003
Google Scholar
[13]
T. Nagyné-kovács et al., Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method, Ceram. Int. (2018) 0–1.
Google Scholar
[14]
B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. Elsevier Science, (2004).
Google Scholar
[15]
C. Capuccini et al., Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response, Acta Biomater. 4, (2008) 1885–1893.
DOI: 10.1016/j.actbio.2008.05.005
Google Scholar
[16]
A. K. Khanra, H. W. A. C. Jung, S. H. Yu, and K. U. G. S. U. N. Hong, Microstructure and mechanical properties of Mg – HAP composites, Bull. Mater. Sci. 33, (2010) 43–47.
DOI: 10.1007/s12034-010-0006-z
Google Scholar
[17]
C. Shu, W. Yanwei, L. Hong, P. Zhengzheng, and Y. Kangde, Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods, Ceram. Int. 31, (2005)135–138.
DOI: 10.1016/j.ceramint.2004.04.012
Google Scholar
[18]
S. V Dorozhkin, A history of calcium orthophosphates (CaPO4) and their biomedical applications, Morphologie, 101, (2017) 143–153.
DOI: 10.1016/j.morpho.2017.05.001
Google Scholar