Extraction of Biological Hydroxyapatite from Bovine Bone for Biomedical Applications

Article Preview

Abstract:

Current biomedical field demands intensive research on cost-effective and high availability materials to fulfil its various applications. Owing to its similar characteristic to human bone, biological hydroxyapatite (HAp) has been used as an alternative in bone replacement and implantation. In this study, biological HAp was extracted from bovine bones via calcination. Powders calcined at 700 °C and 900 °C showed the presence of HAp. The FESEM analysis shows that the irregular morphology emerged and the size was increasing as the calcination temperature increased. By increasing the temperature of 1100 °C, β-TCP started to develop and influenced the ratio of Ca/P. At 900 °C, the Ca/P ratio obtained was 1.70, and closest to the theoretical ratio of Ca/P. The presences of trace elements like Ca, Mg, Sr Na, K and Zn in all samples are proved via EDS analysis, and these elements help to enhance the bioactivity hence make it a good alternative in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

579-583

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Heidari, M. Razavi, M. Ali, and A. Zamani, A comparison between the properties of natural hydroxyapatite produced by cold isostatic pressing and spark plasma sintering techniques, J. Aust. Ceram. Soc. 54, (2017) 337–344.

DOI: 10.1007/s41779-017-0158-z

Google Scholar

[2] B. Komur, T. Lohse, H. M. Can, G. Khalilova, and Z. N. Geçimli, Fabrication of naturel pumice / hydroxyapatite composite for biomedical engineering, Biomed. Eng. Online, (2016) 1–20.

DOI: 10.1186/s12938-016-0203-0

Google Scholar

[3] M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, Extracting hydroxyapatite and its precursors from natural resources, J. Mater. Sci. 49, (2014) 1461–1475.

DOI: 10.1007/s10853-013-7864-x

Google Scholar

[4] M. A. Roudan et al., Processing Research Thermal phase stability and properties of hydroxyapatite derived from bio- waste eggshells, J. Ceram. Process. Res. 18, (2017) 69–72.

Google Scholar

[5] M. Zulhasif et al., Results in Physics Crystallization behavior of low-cost biphasic hydroxyapatite / β -tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources, Results Phys.12, (2019) 638–644.

DOI: 10.1016/j.rinp.2018.12.025

Google Scholar

[6] H. L. Jaber, A. S. Hammood, and N. Parvin, Synthesis and characterization of hydroxyapatite powder from natural Camelus bone, J. Aust. Ceram. Soc. 54 (2018) 1–10.

DOI: 10.1007/s41779-017-0120-0

Google Scholar

[7] M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. de Carlos, and B. León, Biological hydroxyapatite obtained from fish bones, Mater. Sci. Eng. C, 32, (2012) 478–486.

DOI: 10.1016/j.msec.2011.11.021

Google Scholar

[8] N. A. M. Barakat, M. S. Khil, A. M. Omran, F. A. Sheikh, and H. Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J. Mater. Process. Technol., 209, (2009) 3408–3415.

DOI: 10.1016/j.jmatprotec.2008.07.040

Google Scholar

[9] C. Rey, C. Combes, C. Drouet, and D. Grossin, Bioactive Ceramics : Physical Chemistry. Elsevier Ltd., (2011).

DOI: 10.1016/b978-0-08-055294-1.00178-1

Google Scholar

[10] N. A. S. Mohd Pu'ad, P. Koshy, H. Z. Abdullah, M. I. Idris, and T. C. Lee, Syntheses of hydroxyapatite from natural sources, Heliyon, 5, (2019) e01588.

DOI: 10.1016/j.heliyon.2019.e01588

Google Scholar

[11] M. J. Rastgoo, M. Razavi, E. Salahi, and I. Mobasherpour, Sintering behaviour and interfacial toughness of HAp/TCP coatings on HAp/Ti nanocomposite substrates, Bull. Mater. Sci.42,(2019) 13.

DOI: 10.1007/s12034-018-1698-8

Google Scholar

[12] J. Venkatesan, Z. J. Qian, B. Ryu, N. V. Thomas, and S. K. Kim, A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone, Biomed. Mater. 6, (2011)1–12.

DOI: 10.1088/1748-6041/6/3/035003

Google Scholar

[13] T. Nagyné-kovács et al., Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method, Ceram. Int. (2018) 0–1.

Google Scholar

[14] B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. Elsevier Science, (2004).

Google Scholar

[15] C. Capuccini et al., Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response, Acta Biomater. 4, (2008) 1885–1893.

DOI: 10.1016/j.actbio.2008.05.005

Google Scholar

[16] A. K. Khanra, H. W. A. C. Jung, S. H. Yu, and K. U. G. S. U. N. Hong, Microstructure and mechanical properties of Mg – HAP composites, Bull. Mater. Sci. 33, (2010) 43–47.

DOI: 10.1007/s12034-010-0006-z

Google Scholar

[17] C. Shu, W. Yanwei, L. Hong, P. Zhengzheng, and Y. Kangde, Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods, Ceram. Int. 31, (2005)135–138.

DOI: 10.1016/j.ceramint.2004.04.012

Google Scholar

[18] S. V Dorozhkin, A history of calcium orthophosphates (CaPO4) and their biomedical applications, Morphologie, 101, (2017) 143–153.

DOI: 10.1016/j.morpho.2017.05.001

Google Scholar