Bio-Composite of Sodium Alginate-Titanium Dioxide for Wound Healing Applications

Article Preview

Abstract:

Sodium alginate is a natural polymer used for many biomedical applications. The excellent biodegradability and biocompatibility of sodium alginate have provided ample space for future development in wound healing applications. In this study, bio-composite film was prepared by solvent casting technique by blending sodium alginate (SA) solution and titanium dioxide (TiO2) followed by crosslinking with calcium chloride. The bio-composite film was characterized with different characterization technique such as Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD). AFM analysis provides information about surface roughness. The microstructure of bio-composite film was determined by Field Emission Scanning Electron Microscope (FESEM). The wettability of surface material is measure by contact angle. The result demonstrate that the bio-composite film shows high value of surface roughness and contact angle to enhanced blood clotting for wound healing applications

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

555-560

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, J. Chang, and C. Wu (2018). Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater Today, 11,p.308–319.

DOI: 10.1016/j.apmt.2018.03.001

Google Scholar

[2] S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju. A. Asthana, and I. Bhatnagar (2018). Chitosan as biomaterial in drug delivery and tissue engineering, Int. J. Biol. Macromol. 110,p.97–109.

DOI: 10.1016/j.ijbiomac.2017.08.140

Google Scholar

[3] S. S. D. Kumar, N. K. Rajendran, N. N. Houreld, and H. Abrahamse (2018). Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications, Int. J. Biol. Macromol. 115,p.165–175.

DOI: 10.1016/j.ijbiomac.2018.04.003

Google Scholar

[4] M. F. A. Goosen (1997). Applications of Chitin and Chitosan, Illustrate. Technomic Pub.

Google Scholar

[5] H. Zhang (2018). Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing, J. Mater. Sci. 53,p.14944–14952.

DOI: 10.1007/s10853-018-2710-9

Google Scholar

[6] M. F. Moradali, S. Ghods, and B. H. A. Rehm (2018). Alginate Biosynthesis and Biotechnological Production, Springer, Singapore, p.1–25.

Google Scholar

[7] C. Kinnaert, M. Daugaard, F. Nami, and M. H. Clause (2017). Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae, Chem.11337–11405.

DOI: 10.1021/acs.chemrev.7b00162

Google Scholar

[8] C. Peteiro (2018). Alginate Production from Marine Macroalgae, with Emphasis on Kelp Farming, Springer, Singapore, p.27–66.

DOI: 10.1007/978-981-10-6910-9_2

Google Scholar

[9] P. De Vos, H. A. Lazarjani, D. Poncelet, and M. M. Faas (2014). Polymers in cell encapsulation from an enveloped cell perspective, Adv. Drug Deliv,p.15–34.

DOI: 10.1016/j.addr.2013.11.005

Google Scholar

[10] K. Skórkowska-Telichowska, M. Czemplik, A. Kulma, J. Szopa, The local treatment and available dressings designed for chronic wounds, J. Am. Acad Dermatol.68 (2014) 4.

DOI: 10.1016/j.jaad.2011.06.028

Google Scholar

[11] J. Sun, H. Tan (2013). Alginate-based biomaterials for regenerative medicine applications, Materials Basel. vol. 6 p.1285–1309.

DOI: 10.3390/ma6041285

Google Scholar

[12] M. R. El-Aassar, G. F. El fawal, N. M. El-Deeb, H. S. Hassan, X. Mo (2016). Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing, Appl. Biochem. Biotechnol.178, p.1488–1502.

DOI: 10.1007/s12010-015-1962-y

Google Scholar

[13] K. A. Saharudin, S. Sreekantan (2019). Nanotechnology: Applications in Energy, Drug and Food.

Google Scholar

[14] C. Shan et al (2018). Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts, Carbohydr. Polym. 203, p.19–25.

Google Scholar

[15] A. Y. Koga, A. V. Pereira, L. C. Lipinski, M. R. P. Oliveira (2018). Evaluation of wound healing effect of alginate thin films containing Aloe vera (Aloe barbadensis Miller) gel, J. Biomater. Appl. 32, p.1212–1221.

DOI: 10.1177/0885328218754615

Google Scholar

[16] Y. Xie, X. Liao, J. Zhang, F. Yang, and Z. Fan (2018). Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing, Int. J. Biol. Macromol.119 p.402–412.

DOI: 10.1016/j.ijbiomac.2018.07.060

Google Scholar

[17] M. G. Mehrabani (2018). Chitin/silk fibroin/TiO2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity, Int. J. Biol. Macromol.116, p.966–976.

DOI: 10.1016/j.ijbiomac.2018.05.102

Google Scholar

[18] Alcazar, J. C. B., Lemos, R. M. J., Conde, M. C. M., Chisini, L. A., Salas, M. M. S., Noremberg, B. S.,Carreño, and N. L. V (2019). Preparation, characterization, and biocompatibility of different metal oxide/PEG-based hybrid coating synthesized by sol–gel dip coating method for surface modification of titanium, Progress in Organic Coatings. p.206–213.

DOI: 10.1016/j.porgcoat.2019.02.007

Google Scholar

[19] A. C. Ionescu (2017). Streptococcus mutans adherence and biothin film formation on experimental composites containing dicalcium phosphate dihydrate nanoparticles, J. Mater. Sci. Mater. 28, p.1–10.

DOI: 10.1007/s10856-017-5914-7

Google Scholar

[20] K. R (2019). Structural , optical , mechanical and dielectric properties of titanium dioxide doped PVA / PVP nanocomposite.

Google Scholar

[21] A. Ładniak, M. Jurak, and A. E. Wiącek (2019). Wettability of DPPC Monolayers Deposited from the Titanium Dioxide–Chitosan–Hyaluronic Acid Subphases on Glass, Colloids and Interfaces. 3, p.15.

DOI: 10.3390/colloids3010015

Google Scholar

[22] S. Hu (2018). Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing, Carbohydr. Polym.184, p.154–163.

DOI: 10.1016/j.carbpol.2017.12.033

Google Scholar