Effect of Different Firing Temperature on Thermal Conductivity of Ceramic Tiles

Article Preview

Abstract:

The aim of this study is to investigate the effect of different firing temperature on thermal conductivity of ceramic tiles. The body formulation powders of ceramic tiles were made according to the formulation given by company and compacted at 18 MPa using pressing machine in order to obtain button shape specimen with 50 mm diameter. The button shape specimen was fired at different firing temperature which 1150°C, 1175°C, 1200°C and 1225°C. Then, the thermal conductivity of fired specimens was measured by using Hot-Disk Thermal Constant Analyzer. Thermal conductivity result shows that the ceramic tile body fired at 1150 °C producing the lowest thermal conductivity values (0.97 W/mK) in comparison with other specimens. This low thermal conductivity performance is due to the high porosity value in the specimen as a result of more trapped air and implies delaying the heat transfer either inward or outward from the ceramic tiles. Therefore, this study proved that by altering firing temperature, different thermal conductivity values of ceramic tiles were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

665-671

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.T. Selli, Development of anorthite based white porcelain stoneware tile compositions, Ceram. Int. 41 (2015) 7790–7795.

DOI: 10.1016/j.ceramint.2015.02.112

Google Scholar

[2] C. Effting, S. Güths, O.E. Alarcon, Evaluation of the thermal comfort of ceramic floor tiles, Mater. Res. 10 (2007) 301–307.

DOI: 10.1590/s1516-14392007000300016

Google Scholar

[3] E. Enríquez, V. Fuertes, M.J. Cabrera, J. Seores, D. Muñoz, J.F. Fernández, New strategy to mitigate urban heat island effect: Energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials, Sol. Energy. 149 (2017) 114–124.

DOI: 10.1016/j.solener.2017.04.011

Google Scholar

[4] L.M. Schabbach, D.L. Marinoski, S. Güths, A.M. Bernardin, M.C. Fredel, Pigmented glazed ceramic roof tiles in Brazil: Thermal and optical properties related to solar reflectance index, Sol. Energy. 159 (2018) 113–124.

DOI: 10.1016/j.solener.2017.10.076

Google Scholar

[5] M. Sutcu, Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks, Ceram. Int. 41 (2015) 2819–2827.

DOI: 10.1016/j.ceramint.2014.10.102

Google Scholar

[6] M.L. Gualtieri, A.F. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, M. Hanuskova, Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials, Appl. Clay Sci. 49 (2010) 269–275.

DOI: 10.1016/j.clay.2010.06.002

Google Scholar

[7] I. Allegretta, G. Eramo, D. Pinto, A. Hein, The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics, Appl. Clay Sci. 135 (2017) 260–270.

DOI: 10.1016/j.clay.2016.10.001

Google Scholar

[8] U. Berardi, Development of glazing systems with silica aerogel, Energy Procedia. 78 (2015) 394–399.

DOI: 10.1016/j.egypro.2015.11.682

Google Scholar

[9] Q. Bao, W. Dong, J. Zhou, K. Liu, T. Zhao, Influence of calcite on the microstructure and sintering properties of the porcelain ceramic tiles, p.88, (2017) 881–886.

DOI: 10.2109/jcersj2.17105

Google Scholar

[10] F. Contartesi, F.G. Melchiades, A.O. Boschi, Anticipated Overfiring in Porcelain Tiles: Effects of the firing cycle and green bulk density, Bol. La Soc. Esp. Ceram. Y Vidr. (2018) 1–8.

DOI: 10.1016/j.bsecv.2018.07.001

Google Scholar

[11] A. Pavese, L. Pagliari, I. Adamo, V. Diella, F. Francescon, Effects of particle size distribution and starting phase composition in Na-feldspar/kaolinite system at high temperature, J. Eur. Ceram. Soc. 35 (2014) 1327–1335.

DOI: 10.1016/j.jeurceramsoc.2014.10.035

Google Scholar

[12] E. Eren Gültekin, The effect of heating rate and sintering temperature on the elastic modulus of porcelain tiles, Ultrasonics. 83 (2018) 120–125.

DOI: 10.1016/j.ultras.2017.06.005

Google Scholar

[13] J. García-Ten, M.J. Orts, A. Saburit, G. Silva, Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition, Ceram. Int. 36 (2010) 2017–(2024).

DOI: 10.1016/j.ceramint.2010.05.013

Google Scholar

[14] S. Kitouni, a Harabi, Sintering and mechanical properties of porcelains prepared from algerian raw materials ( Sinterização e propriedades mecânicas de porcelanas, Cerâmica. 57 (2011) 453–460.

DOI: 10.1590/s0366-69132011000400013

Google Scholar

[15] Y. Kobayashi, O. Ohira, Y. Ohashi, E. Kato, Effect of Firing Temperature on Bending Strength of Porcelains for Tableware, J. Am. Ceram. Soc. 75 (1992) 1801–1806.

DOI: 10.1111/j.1151-2916.1992.tb07200.x

Google Scholar

[16] J.G. Ten, M.J. Orts, A. Saburit, G. Silva, thermal conductivity of traditional ceTramics. Part I: Influence of bulk density and firing temperature, Ceram. Int. 36 (2010) 1951–(1959).

DOI: 10.1016/j.ceramint.2010.05.012

Google Scholar

[17] H. Machrafi, G. Lebon, Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix, Phys. Lett. Sect. A Gen. At. Solid State Phys. 379 (2015) 968–973.

DOI: 10.1016/j.physleta.2015.01.027

Google Scholar

[18] K. Almadhoni, S. Khan, ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites, 5 (2015) 17–27.

Google Scholar