[1]
N.T. Selli, Development of anorthite based white porcelain stoneware tile compositions, Ceram. Int. 41 (2015) 7790–7795.
DOI: 10.1016/j.ceramint.2015.02.112
Google Scholar
[2]
C. Effting, S. Güths, O.E. Alarcon, Evaluation of the thermal comfort of ceramic floor tiles, Mater. Res. 10 (2007) 301–307.
DOI: 10.1590/s1516-14392007000300016
Google Scholar
[3]
E. Enríquez, V. Fuertes, M.J. Cabrera, J. Seores, D. Muñoz, J.F. Fernández, New strategy to mitigate urban heat island effect: Energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials, Sol. Energy. 149 (2017) 114–124.
DOI: 10.1016/j.solener.2017.04.011
Google Scholar
[4]
L.M. Schabbach, D.L. Marinoski, S. Güths, A.M. Bernardin, M.C. Fredel, Pigmented glazed ceramic roof tiles in Brazil: Thermal and optical properties related to solar reflectance index, Sol. Energy. 159 (2018) 113–124.
DOI: 10.1016/j.solener.2017.10.076
Google Scholar
[5]
M. Sutcu, Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks, Ceram. Int. 41 (2015) 2819–2827.
DOI: 10.1016/j.ceramint.2014.10.102
Google Scholar
[6]
M.L. Gualtieri, A.F. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, M. Hanuskova, Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials, Appl. Clay Sci. 49 (2010) 269–275.
DOI: 10.1016/j.clay.2010.06.002
Google Scholar
[7]
I. Allegretta, G. Eramo, D. Pinto, A. Hein, The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics, Appl. Clay Sci. 135 (2017) 260–270.
DOI: 10.1016/j.clay.2016.10.001
Google Scholar
[8]
U. Berardi, Development of glazing systems with silica aerogel, Energy Procedia. 78 (2015) 394–399.
DOI: 10.1016/j.egypro.2015.11.682
Google Scholar
[9]
Q. Bao, W. Dong, J. Zhou, K. Liu, T. Zhao, Influence of calcite on the microstructure and sintering properties of the porcelain ceramic tiles, p.88, (2017) 881–886.
DOI: 10.2109/jcersj2.17105
Google Scholar
[10]
F. Contartesi, F.G. Melchiades, A.O. Boschi, Anticipated Overfiring in Porcelain Tiles: Effects of the firing cycle and green bulk density, Bol. La Soc. Esp. Ceram. Y Vidr. (2018) 1–8.
DOI: 10.1016/j.bsecv.2018.07.001
Google Scholar
[11]
A. Pavese, L. Pagliari, I. Adamo, V. Diella, F. Francescon, Effects of particle size distribution and starting phase composition in Na-feldspar/kaolinite system at high temperature, J. Eur. Ceram. Soc. 35 (2014) 1327–1335.
DOI: 10.1016/j.jeurceramsoc.2014.10.035
Google Scholar
[12]
E. Eren Gültekin, The effect of heating rate and sintering temperature on the elastic modulus of porcelain tiles, Ultrasonics. 83 (2018) 120–125.
DOI: 10.1016/j.ultras.2017.06.005
Google Scholar
[13]
J. García-Ten, M.J. Orts, A. Saburit, G. Silva, Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition, Ceram. Int. 36 (2010) 2017–(2024).
DOI: 10.1016/j.ceramint.2010.05.013
Google Scholar
[14]
S. Kitouni, a Harabi, Sintering and mechanical properties of porcelains prepared from algerian raw materials ( Sinterização e propriedades mecânicas de porcelanas, Cerâmica. 57 (2011) 453–460.
DOI: 10.1590/s0366-69132011000400013
Google Scholar
[15]
Y. Kobayashi, O. Ohira, Y. Ohashi, E. Kato, Effect of Firing Temperature on Bending Strength of Porcelains for Tableware, J. Am. Ceram. Soc. 75 (1992) 1801–1806.
DOI: 10.1111/j.1151-2916.1992.tb07200.x
Google Scholar
[16]
J.G. Ten, M.J. Orts, A. Saburit, G. Silva, thermal conductivity of traditional ceTramics. Part I: Influence of bulk density and firing temperature, Ceram. Int. 36 (2010) 1951–(1959).
DOI: 10.1016/j.ceramint.2010.05.012
Google Scholar
[17]
H. Machrafi, G. Lebon, Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix, Phys. Lett. Sect. A Gen. At. Solid State Phys. 379 (2015) 968–973.
DOI: 10.1016/j.physleta.2015.01.027
Google Scholar
[18]
K. Almadhoni, S. Khan, ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites, 5 (2015) 17–27.
Google Scholar