[1]
G. M. Reeves, I. Sims and J.C. Cripps, Clay Materials used in Construction, London: The Geological Society, (2006).
Google Scholar
[2]
R.E. Grim, Clay mineralogy, 2nd ed., McGraw – Hill Book Company, (1968).
Google Scholar
[3]
S. Guggenheim, R. T. Martin, Definition of clay and clay mineral, Clays and Clay Minerals, 43 [2] (1995) 255 – 256.
DOI: 10.1346/ccmn.1995.0430213
Google Scholar
[4]
S. Ismail, Z.C. Kasim, H.C. Harun, Malaysia Minerals Year Book 2010, Minerals and Geoscience Department of Malaysia, Miistry of Natural Resources and Environment Malaysia, 2010, p.74 – 87.
Google Scholar
[5]
A.M. Bernardin, M.C. Casagrande, H.G. Riella, Rheological behavior of porcelain tile slurries, Qualicer (2006) 175 – 180.
Google Scholar
[6]
G. Moortgat, N. Vancaster, V. Vandeneede, F. Cambier, The characterization of clay slurries using polarization resistance measurements, Qualicer (1994) 203 – 213.
Google Scholar
[7]
C.L. Chin, Z.A. Ahmad, S.S. Sow, Rheological behavior and fired properties of Malaysia clay from Mersing (Johor) in application to manufacturing of ceramic tiles, International Journal of Current Science, Enginering & Technology, Special Issue (2018) 160 - 165.
DOI: 10.30967/ijcrset.1.s1.2018.160-165
Google Scholar
[8]
H. Baccour, M. Medhioub, F. Jamoussi, T. Mhiri, Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia, J. Mater. Process. Technol. 209 (2009) 2812 – 2817.
DOI: 10.1016/j.jmatprotec.2008.06.055
Google Scholar
[9]
S. Ferrari, A.F. Gualtieri, The use of illitic clays in the production of stoneware tile ceramic, Appl. Clay Sci. 32 (2006) 73 – 81.
DOI: 10.1016/j.clay.2005.10.001
Google Scholar
[10]
H.M. Zhou, X.C. Qiao, J.G. Yu, Influence of quartz and muscovite on the formation of mullite from kaolinite, Appl. Clay Sci. 80 – 81 (2013) 176 – 181.
DOI: 10.1016/j.clay.2013.04.004
Google Scholar
[11]
F.A.C. Milheiro, M.N. Freire, A.G.P. Silva, J.N.F. Holanda, Densification behavior of a red firing Brazilian kaolinitic clay, Ceramic International 31 (2005) 757 – 763.
DOI: 10.1016/j.ceramint.2004.08.010
Google Scholar
[12]
M. Daoudi, M. Raimondo, M. Zanelli, Clays and bodies for ceramic tiles: Reappraisal and technological classification, Appl. Clay Sci. 96 (2014) 91 – 109.
DOI: 10.1016/j.clay.2014.01.013
Google Scholar
[13]
E. Escalera, R. Tegman, M.L. Antti, M. Odén, High temperature phase evolution of Bolivian kaolinitic-illitic clays heated to 1250 °C, Appl. Clay Sci. 101 (2014) 100 – 105.
DOI: 10.1016/j.clay.2014.07.024
Google Scholar
[14]
W. Ryan, Properties of ceramic raw materials, 2nd ed., Pergamon, (1978).
Google Scholar
[15]
W.M. Carty, U. Senapati, Porcelain – raw materials, processing, phase evolution and mechanical behaviour, J. Am. Ceram. Soc. 81 (1998) 3 – 20.
Google Scholar
[16]
P.I. Au, Y.K. Leong, Rheological and zeta potential of kaolin and bentonite composite slurries, Colloid and Surface A: Physiochemical and Engineering Aspect 436 (2013) 530 – 541.
DOI: 10.1016/j.colsurfa.2013.06.039
Google Scholar
[17]
I. Ibrahim, M.M. Alimon, Effect of diesel on adsorption of coco amine in muscovite and quartz, Asian American Min. Mineral Process. Res. J. 1 (2015) 1 – 6.
Google Scholar
[18]
ISO 13006, Ceramic tiles – definitions, classification, characteristics and marking. International Standard, (2012).
Google Scholar
[19]
F.A.C. Milheiro, M.N. Freire, A.G.P. Silvia, J.N.F. Holando, Densification behavior of a red firing Brazilian kaolinitic clay, Ceramic International 31 (2005) 757 – 763.
DOI: 10.1016/j.ceramint.2004.08.010
Google Scholar
[20]
I. Ózkan, M. ςolak, R.E. Oyman, Characterization of waste clay from the Sardes (Salihli) placer gold mine and its utilization in floor – tile manufacture, Appl. Clay Sci. 49 (2010) 420 – 425.
DOI: 10.1016/j.clay.2009.08.021
Google Scholar