Microstructure after Solution Annealing of the Nuclear Grade Austenitic Stainless Steel DIN 1.4970

Article Preview

Abstract:

The main objective of the present work was to characterize the phases that are present after solution annealing in the microstructure of the titanium stabilized austenitic stainless steel W.-Nr. 1.4970, developed as a candidate material for fast breeder reactor fuel cladding. The crystalline structure, chemical composition, quantity, size, morphology, and distribution of the phases present in the microstructure after solution annealing heat treatments were studied in detail with the help of several complementary techniques. Chemical dissolution of the matrix has been performed using the Berzelius solution and the extracted residue has been analyzed by X-ray diffraction in a high precision camera. Three phases have been observed and identified after solution annealing heat treatments performed in the 1090 to 1300 °C temperature range, namely: (Ti,Mo)C; Ti (N,C) and Ti4C2S2. The Ti-nitride and the Ti-carbosulfide did not dissolve in the steel matrix up to 1300 °C, on the other hand, the solubility of the (Ti,Mo)C raised strongly with temperature. A solution annealing heat treatment is recommended for the W. Nr. 1.4970 stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1147-1152

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Cautaerts et al., J. Nucl. Mater., Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes, 493 (2017) 154-167.

DOI: 10.1016/j.jnucmat.2017.06.013

Google Scholar

[2] A.F. Padilha, G. Schanz, K. Anderko, J. Nucl. Mater., Ausscheidungsverhalten des titanstabilisierten austenitischen stahls 15% Cr-15% Ni-1% Mo-Ti-B (DIN-Werkstoff-nr. 1.4970), 105 (1982) 77-92.

DOI: 10.1016/0022-3115(82)90454-8

Google Scholar

[3] A.F. Padilha, P.R. Rios, ISIJ Int., Decomposition of austenite in austenitic stainless steels,42 (2002) 325-337.

DOI: 10.2355/isijinternational.42.325

Google Scholar

[4] K.E. Burke, Metallogr., Chemical extraction of refractory inclusions from iron- and nickel-base alloys, 8 (1975) 473-488.

DOI: 10.1016/0026-0800(75)90023-3

Google Scholar

[5] E.G. Hofmann, H. Jagodzinski, Z. Metallkd., A new high-resolution X-ray diffraction device with an improved focusing monochromator and X-ray tube (in German), 46 (1955) 601-610.

Google Scholar

[6] E. Hellner, Z. Kristallogr., Intensity measurements performed on Guinier-camera films (in German), 106 (1954) 122-145.

Google Scholar

[7] C. Da Casa, V.B. Nileshwar, J. Iron Steel Inst., Metallography of Y-phase in type 321 stainless steels, 207 (1969) 1003-1009.

Google Scholar

[8] P. Duwez, F. Odell, J. Electrochem. Soc., Phase relationship in the binary systems of nitrides and carbides of zirconium, columbium, titanium and vanadium, 97 (1950) 299-304.

DOI: 10.1149/1.2777885

Google Scholar

[9] V.N. Eremenko, T.Y. Velikanova, Sov. Powder Metall. Met. Ceram., The interaction of molybdenum with titanium carbide, 13 (1963) 347-352.

DOI: 10.1007/bf01194667

Google Scholar

[10] M.L. Flem et al,J. Nucl. Mater., Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing, 380 (2008) 85-92.

DOI: 10.1016/j.jnucmat.2008.01.033

Google Scholar

[11] N. Cautaerts, et al., Acta Mater., Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale, 164 (2019) 90-98.

DOI: 10.1016/j.actamat.2018.10.018

Google Scholar

[12] B.D. Cullity, Elements of X-ray diffraction, 2nd ed., Addison-Wesley, Reading, USA, (1978).

Google Scholar

[13] A.N. Christensen, Acta Chem. Scand. A, The temperature factor parameters of some transition metal carbides and nitrides by single crystal X-ray and neutron diffraction, 32 (1978) 89-90.

DOI: 10.3891/acta.chem.scand.32a-0089

Google Scholar

[14] J.F. Brown, W.D. Clark, B.A. Parker, Metallurgia (Manchester), The extraction of minor phases from austenitic steel, 56 (1957) 215-233.

Google Scholar

[15] K. Wetzlar, G. Lennartz, DEW- Techn. Ber., On the occurrence of the titaniumsulphide Ti2S in titanium stabilized austenitic Cr-Ni steels (in German),1 (1961) 15-16.

Google Scholar

[16] H. Kudielka, H. Rohde, Z. Kristallogr., Structural investigations of the carbosulfides of titanium and zirconium (in German), 114 (1960) 441-456.

Google Scholar

[17] A.F. Padilha, J.C. Dutra, V. Randle, Mater. Sci. and Tech-Lond., Interaction between precipitation, normal grain growth, and secondary recrystallisation in austenitic stainless steel containing particles, 15 (1999) 1009-1014.

DOI: 10.1179/026708399101506850

Google Scholar

[18] M. Deighton, J. Iron Steel Inst., Solubility of M23C6 in type 316 stainless steel, 208 (1970) 1012-1014.

Google Scholar