[1]
N. Cautaerts et al., J. Nucl. Mater., Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes, 493 (2017) 154-167.
DOI: 10.1016/j.jnucmat.2017.06.013
Google Scholar
[2]
A.F. Padilha, G. Schanz, K. Anderko, J. Nucl. Mater., Ausscheidungsverhalten des titanstabilisierten austenitischen stahls 15% Cr-15% Ni-1% Mo-Ti-B (DIN-Werkstoff-nr. 1.4970), 105 (1982) 77-92.
DOI: 10.1016/0022-3115(82)90454-8
Google Scholar
[3]
A.F. Padilha, P.R. Rios, ISIJ Int., Decomposition of austenite in austenitic stainless steels,42 (2002) 325-337.
DOI: 10.2355/isijinternational.42.325
Google Scholar
[4]
K.E. Burke, Metallogr., Chemical extraction of refractory inclusions from iron- and nickel-base alloys, 8 (1975) 473-488.
DOI: 10.1016/0026-0800(75)90023-3
Google Scholar
[5]
E.G. Hofmann, H. Jagodzinski, Z. Metallkd., A new high-resolution X-ray diffraction device with an improved focusing monochromator and X-ray tube (in German), 46 (1955) 601-610.
Google Scholar
[6]
E. Hellner, Z. Kristallogr., Intensity measurements performed on Guinier-camera films (in German), 106 (1954) 122-145.
Google Scholar
[7]
C. Da Casa, V.B. Nileshwar, J. Iron Steel Inst., Metallography of Y-phase in type 321 stainless steels, 207 (1969) 1003-1009.
Google Scholar
[8]
P. Duwez, F. Odell, J. Electrochem. Soc., Phase relationship in the binary systems of nitrides and carbides of zirconium, columbium, titanium and vanadium, 97 (1950) 299-304.
DOI: 10.1149/1.2777885
Google Scholar
[9]
V.N. Eremenko, T.Y. Velikanova, Sov. Powder Metall. Met. Ceram., The interaction of molybdenum with titanium carbide, 13 (1963) 347-352.
DOI: 10.1007/bf01194667
Google Scholar
[10]
M.L. Flem et al,J. Nucl. Mater., Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing, 380 (2008) 85-92.
DOI: 10.1016/j.jnucmat.2008.01.033
Google Scholar
[11]
N. Cautaerts, et al., Acta Mater., Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale, 164 (2019) 90-98.
DOI: 10.1016/j.actamat.2018.10.018
Google Scholar
[12]
B.D. Cullity, Elements of X-ray diffraction, 2nd ed., Addison-Wesley, Reading, USA, (1978).
Google Scholar
[13]
A.N. Christensen, Acta Chem. Scand. A, The temperature factor parameters of some transition metal carbides and nitrides by single crystal X-ray and neutron diffraction, 32 (1978) 89-90.
DOI: 10.3891/acta.chem.scand.32a-0089
Google Scholar
[14]
J.F. Brown, W.D. Clark, B.A. Parker, Metallurgia (Manchester), The extraction of minor phases from austenitic steel, 56 (1957) 215-233.
Google Scholar
[15]
K. Wetzlar, G. Lennartz, DEW- Techn. Ber., On the occurrence of the titaniumsulphide Ti2S in titanium stabilized austenitic Cr-Ni steels (in German),1 (1961) 15-16.
Google Scholar
[16]
H. Kudielka, H. Rohde, Z. Kristallogr., Structural investigations of the carbosulfides of titanium and zirconium (in German), 114 (1960) 441-456.
Google Scholar
[17]
A.F. Padilha, J.C. Dutra, V. Randle, Mater. Sci. and Tech-Lond., Interaction between precipitation, normal grain growth, and secondary recrystallisation in austenitic stainless steel containing particles, 15 (1999) 1009-1014.
DOI: 10.1179/026708399101506850
Google Scholar
[18]
M. Deighton, J. Iron Steel Inst., Solubility of M23C6 in type 316 stainless steel, 208 (1970) 1012-1014.
Google Scholar