Fatigue Behavior of Age-Hardening Cu-6Ni-1.5Si Alloys with Different Grain Sizes

Article Preview

Abstract:

On the thermomechanical treatments of Cu-Ni-Si alloy, cold-rolling (CR) before solution heat treatment (SHT) is commonly conducted to eliminate defects in a casting slab. In addition, a rolling is applied to reduce/adjust the thickness of casting slab before SHT. In a heavily deformed microstructure by CR, on the other hand, grain growth during a heating in SHT is likely to occur as the result of recrystallization. In general, tensile strength and fatigue strength tend to decrease with an increase in the grain size. However, the effect of difference in grain sizes produced by with and without CR before SHT on the fatigue strength is unclear. In the present study, fatigue tests of Cu-6Ni-Si alloy smooth specimens with a grain fabricated through different thermomechanical processes were conducted. The fatigue behavior of Cu-Ni-Si alloy was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

125-131

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Lockyer F.W. Noble, Fatigue of precipitate strengthened Cu-Ni-Si alloy. Mater Sci Technol. 15 (1999) 1147–1153.

DOI: 10.1179/026708399101505194

Google Scholar

[2] D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, Z.H. Jin, Structure and strength of the age hardened Cu–Ni–Si alloy. Mater Chemistry Physics 79 (2003) 81–86.

DOI: 10.1016/s0254-0584(02)00451-0

Google Scholar

[3] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda, Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Compds 417 (2006) 116–120.

DOI: 10.1016/j.jallcom.2005.09.037

Google Scholar

[4] T. Hu, J.H. Chen J, J.Z. Liu, Z.R. Liu, C.L. Wu, The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys. Acta Mater 61 (2013) 1210–1219.

DOI: 10.1016/j.actamat.2012.10.031

Google Scholar

[5] F. Findik, Discontinuous (cellular) precipitation, J. Mater. Sci. Lett. 17 (1998) 79–83.

Google Scholar

[6] S.Z. Han, S.H. Lim, S. Kim, J. Lee , M. Goto, H.G. Kim, B. Han, K.H. Kim, Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound, Sci. Rep. 6 (2016) 30907.

DOI: 10.1038/srep30907

Google Scholar

[7] S. Semboshi, S. Sato, A. Iwase, T. Takasugi, Discontinuous precipitates in age-hardening Cu–Ni–Si alloy. Materials Characterization, 115 (2016) 39–45.

DOI: 10.1016/j.matchar.2016.03.017

Google Scholar

[8] R. Monzen, R. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys, Mater. Sci. Eng, A483–484 (2008) 117–119.

DOI: 10.1016/j.msea.2006.12.163

Google Scholar

[9] D. Favez, J. D. Wagnière, M. Rappaz. Au–Fe alloy solidification and solid-state transformations. Acta Mate. 58 (2010) 1016–1025.

DOI: 10.1016/j.actamat.2009.10.017

Google Scholar

[10] M. Goto, S.Z. Han, S.H. Lim, J. Kitamura, T. Fujimura, J.H. Ahn, T. Yamamoto, S. Kim, J. Lee, Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu–Ni–Si alloy, Inter. J. Fatigue 87 (2016) 15–21.

DOI: 10.1016/j.ijfatigue.2016.01.004

Google Scholar

[11] M. Goto, T. Yamamoto, S.Z. Han, S.H. Lim, S. Kim, T, Iwamura, J. Kitamura, J.H. Ahn, J. Lee, Microstructure-dependent fatigue behavior of aged Cu-6Ni-1.5Si alloy with discontinuous/cellular precipitates. Mater Sci Eng A 747 (2019) 63-72.

DOI: 10.1016/j.msea.2019.01.057

Google Scholar

[12] H. Nisitani, M. Goto, N. Kawagoishi, A small-crack growth law and its related phenomena. Eng Fract Mech 4 (1992) 499-513.

DOI: 10.1016/0142-1123(93)90063-v

Google Scholar

[13] M. Goto, H. Nisitani, Fatigue life prediction of heat-treated carbon steels and low alloy steels based on a small crack growth law. Fatigue Fract Eng Mater Struct 17 (1994) 171-185.

DOI: 10.1016/0142-1123(95)99775-6

Google Scholar