[1]
S.A. Lockyer F.W. Noble, Fatigue of precipitate strengthened Cu-Ni-Si alloy. Mater Sci Technol. 15 (1999) 1147–1153.
DOI: 10.1179/026708399101505194
Google Scholar
[2]
D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, Z.H. Jin, Structure and strength of the age hardened Cu–Ni–Si alloy. Mater Chemistry Physics 79 (2003) 81–86.
DOI: 10.1016/s0254-0584(02)00451-0
Google Scholar
[3]
S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda, Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Compds 417 (2006) 116–120.
DOI: 10.1016/j.jallcom.2005.09.037
Google Scholar
[4]
T. Hu, J.H. Chen J, J.Z. Liu, Z.R. Liu, C.L. Wu, The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys. Acta Mater 61 (2013) 1210–1219.
DOI: 10.1016/j.actamat.2012.10.031
Google Scholar
[5]
F. Findik, Discontinuous (cellular) precipitation, J. Mater. Sci. Lett. 17 (1998) 79–83.
Google Scholar
[6]
S.Z. Han, S.H. Lim, S. Kim, J. Lee , M. Goto, H.G. Kim, B. Han, K.H. Kim, Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound, Sci. Rep. 6 (2016) 30907.
DOI: 10.1038/srep30907
Google Scholar
[7]
S. Semboshi, S. Sato, A. Iwase, T. Takasugi, Discontinuous precipitates in age-hardening Cu–Ni–Si alloy. Materials Characterization, 115 (2016) 39–45.
DOI: 10.1016/j.matchar.2016.03.017
Google Scholar
[8]
R. Monzen, R. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys, Mater. Sci. Eng, A483–484 (2008) 117–119.
DOI: 10.1016/j.msea.2006.12.163
Google Scholar
[9]
D. Favez, J. D. Wagnière, M. Rappaz. Au–Fe alloy solidification and solid-state transformations. Acta Mate. 58 (2010) 1016–1025.
DOI: 10.1016/j.actamat.2009.10.017
Google Scholar
[10]
M. Goto, S.Z. Han, S.H. Lim, J. Kitamura, T. Fujimura, J.H. Ahn, T. Yamamoto, S. Kim, J. Lee, Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu–Ni–Si alloy, Inter. J. Fatigue 87 (2016) 15–21.
DOI: 10.1016/j.ijfatigue.2016.01.004
Google Scholar
[11]
M. Goto, T. Yamamoto, S.Z. Han, S.H. Lim, S. Kim, T, Iwamura, J. Kitamura, J.H. Ahn, J. Lee, Microstructure-dependent fatigue behavior of aged Cu-6Ni-1.5Si alloy with discontinuous/cellular precipitates. Mater Sci Eng A 747 (2019) 63-72.
DOI: 10.1016/j.msea.2019.01.057
Google Scholar
[12]
H. Nisitani, M. Goto, N. Kawagoishi, A small-crack growth law and its related phenomena. Eng Fract Mech 4 (1992) 499-513.
DOI: 10.1016/0142-1123(93)90063-v
Google Scholar
[13]
M. Goto, H. Nisitani, Fatigue life prediction of heat-treated carbon steels and low alloy steels based on a small crack growth law. Fatigue Fract Eng Mater Struct 17 (1994) 171-185.
DOI: 10.1016/0142-1123(95)99775-6
Google Scholar