Development and Characterization of New Ti-25Ta-Zr Alloys for Biomedical Applications

Article Preview

Abstract:

This paper deals with the study of the development, structural and microstructural characterization and, selected mechanical properties of Ti-25Ta-50Zr alloy for biomedical applications. The alloy was melted in an arc furnace and various solution heat treatments were performed to analyze the influence of the temperature and time on the structure, microstructure, microhardness and elastic modulus of the samples. The structural and microstructural results, obtained by X-ray diffraction and microscopy techniques, showed that the solution heat treatment performed at high temperatures induces the formation of the β phase, while solution heat treatment performed at low temperatures induces the formation of the α” and ω metastable phases. Regarding the effect of time, samples subjected to heat treatment for 6 hours have only the β phase, indicating that lengthy treatments suppress the α” phase. Regarding the hardness and elastic modulus, the alloy with the α” and ω phases, after treatment performed at a temperature of 500 °C, has a high hardness value and elastic modulus due to the presence of the ω phase that hardens and weakens alloys. The titanium alloys developed in this study have excellent mechanical properties results for use in the orthopedic area, better than many commercial materials such as cp-Ti, stainless steel and Co-Cr alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

137-144

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.-C. Zhang and L.-Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Advanced Engineering Materials 21 (2019) 1801215.

DOI: 10.1002/adem.201801215

Google Scholar

[2] J. L. Katz, Anisotropy of Young's modulus of bone, Nature 283 (1980) 106-107.

Google Scholar

[3] M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[4] M. Kaur and K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Materials Science and Engineering: C 102 (2019) 844-862.

DOI: 10.1016/j.msec.2019.04.064

Google Scholar

[5] R. Kolli and A. Devaraj, A review of metastable beta titanium alloys, Metals 8 (2018) 506.

DOI: 10.3390/met8070506

Google Scholar

[6] Y. Kirmanidou, M. Sidira, M.-E. Drosou, V. Bennani, A. Bakopoulou, A. Tsouknidas, N. Michailidis and K. Michalakis, New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review, BioMed Research International 2016 (2016) 21.

DOI: 10.1155/2016/2908570

Google Scholar

[7] L. Kang and C. Yang, A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties, Advanced Engineering Materials 21 (2019) 1801359.

DOI: 10.1002/adem.201801359

Google Scholar

[8] F. d. F. Quadros, P. A. B. Kuroda, K. d. S. J. Sousa, T. A. G. Donato and C. R. Grandini, Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical applications, Journal of Materials Research and Technology 8 (2019) 4108-4114.

DOI: 10.1016/j.jmrt.2019.07.020

Google Scholar

[9] P. A. B. Kuroda, F. d. F. Quadros, R. O. d. Araújo, C. R. M. Afonso and C. R. Grandini, Effect of Thermomechanical Treatments on the Phases, Microstructure, Microhardness and Young's Modulus of Ti-25Ta-Zr Alloys, Materials 12 (2019) 3210.

DOI: 10.3390/ma12193210

Google Scholar

[10] P. A. B. Kuroda, F. de Freitas Quadros, K. d. S. J. Sousa, T. A. G. Donato, R. O. de Araújo and C. R. Grandini, Preparation, structural, microstructural, mechanical and cytotoxic characterization of as-cast Ti-25Ta-Zr alloys, J Mater Sci: Mater Med 31 (2020) 19.

DOI: 10.1007/s10856-019-6350-7

Google Scholar

[11] F. d. F. Quadros, P. A. B. Kuroda, K. d. S. J. Sousa, T. A. G. Donato and C. R. Grandini, Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical applications, Journal of Materials Research and Technology (2019).

DOI: 10.1016/j.jmrt.2019.07.020

Google Scholar

[12] P. A. B. Kuroda, M. L. Lourenço, D. R. N. Correa and C. R. Grandini, Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications, Journal of Alloys and Compounds 812 (2020) 152108.

DOI: 10.1016/j.jallcom.2019.152108

Google Scholar

[13] ASTM, E92-82, E92-82 - Standard Test Method for Vickers Hardness of Metallic Materials, (2003).

Google Scholar

[14] ASTM, E1876–01, E1876–01 - Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, (2002).

DOI: 10.1520/e1876-01

Google Scholar

[15] A. d. F2066-13, Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150), (2013).

DOI: 10.1520/f2066_f2066m

Google Scholar

[16] C. C. Xavier, D. R. N. Correa, C. R. Grandini and L. A. Rocha, Low temperature heat treatments on Ti-15Zr-xMo alloys, Journal of Alloys and Compounds 727 (2017) 246-253.

DOI: 10.1016/j.jallcom.2017.08.072

Google Scholar

[17] D. R. N. Correa, M. L. Lourenço, P. A. B. Kuroda, M. A. R. Buzalaf and C. R. Grandini, Effect of Some Heat Treatments on Anelastic Properties of Ti-15Zr-xMo Alloys, Materials Science Forum 869 (2016) 907-912.

DOI: 10.4028/www.scientific.net/msf.869.907

Google Scholar

[18] P. A. B. Kuroda, M. L. Lourenço, D. R. N. Correa and C. R. Grandini, Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications, Journal of Alloys and Compounds (2019) 152108.

DOI: 10.1016/j.jallcom.2019.152108

Google Scholar

[19] E. W. Collings, The Physical Metallurgy of Titanium Alloys, ASM International, Ohio, (1989).

Google Scholar

[20] Y. Ohmori, T. Ogo, K. Nakai and S. Kobayashi, Effects of [omega]-phase precipitation on [beta]-->[alpha], [alpha], transformations in a metastable [beta] titanium alloy, Materials Science and Engineering A 312 (2001) 182-188.

DOI: 10.1016/s0921-5093(00)01891-8

Google Scholar

[21] F. G. Coury, M. Kaufman and A. J. Clarke, Solid-solution strengthening in refractory high entropy alloys, Acta Materialia 175 (2019) 66-81.

DOI: 10.1016/j.actamat.2019.06.006

Google Scholar

[22] R. Boyer, G. Welsch and E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, (1994).

Google Scholar

[23] W.-F. Ho, Effect of Omega Phase on Mechanical Properties of Ti-Mo Alloys for Biomedical Applications, Journal of Medical and Biological Engineering 28 (2008) 47-51.

Google Scholar

[24] M. S. Baltatu, C. A. Tugui, M. C. Perju, M. Benchea, M. C. Spataru, A. V. Sandu and P. Vizureanu, Biocompatible Titanium Alloys used in Medical Applications, Revista de Chimie 70 (2019) 1302-1306.

DOI: 10.37358/rc.19.4.7114

Google Scholar