Deformation Behavior of Single Particle Cold Spray Ti-6Al-4V Splats

Article Preview

Abstract:

The rapid development of cold spray technology has made it a viable option to repair and remanufacture damaged components as well as to create novel materials for biomedical applications. One of the most influential parameters of this distinctive process is the deposition velocity, which ultimately controls the degree of material deformation and material adhesion. Although the majority of materials can be successfully deposited at relative low deposition velocity (<700m/s), this is not representative of Ti alloys which have high yield strength. The amount of deformation and resultant properties of the coating are related to the velocity, temperature, and tensile strength of the particles. The ability to predict the deformation and resultant properties helps in developing process parameters and tailoring coatings to get the desired properties. In the current study, the particle deformation behavior and bonding with the substrate was investigated over a range of impact conditions. The effects of deposition velocity, gas temperature, gas pressure and nozzle stand-off distance were studied using cold sprayed splats of spherical Ti-6Al-4V powder deposited on to 316 SS substrate utilizing helium as a carrier gas. Finite element modeling of the impacted particles was conducted using Johnson-Cook high-strain-rate properties in a Lagrangian analysis to predict the overall deformation and estimated stress state of the impacted particles. Particle temperature due to impact was also predicted. Overall predictions were in good agreement with experimental results. Optical microscopy, scanning electron microscopy (SEM) and focused ion beam (FIB) were used to identify three distinct regions within the impact morphologies; these include the initial impact region, the jetting region, and the upper splat region.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1325-1330

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Schmidt, F. Gaertner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), pp.488-494.

DOI: 10.1361/105996306x147144

Google Scholar

[2] T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), pp.729-742.

DOI: 10.1016/j.actamat.2005.10.005

Google Scholar

[3] G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p.5654.

DOI: 10.1016/j.actamat.2009.07.061

Google Scholar

[4] G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), pp.4858-4868.

DOI: 10.1016/j.actamat.2008.06.003

Google Scholar

[5] S. Guetta, M. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), pp.331-342.

DOI: 10.1007/s11666-009-9327-0

Google Scholar

[6] D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Property Mapping of Cold Spray Ti Splats, J. Therm. Spray Technol., 2011, 20(3), pp.486-496.

DOI: 10.1007/s11666-010-9546-4

Google Scholar

[7] R.R. Chromik, D. Goldbaum, J.M. Shockley, S. Yue, E. Irissou, J.-G. Legoux, and N.X. Randall, Modified Ball Bond Shear Test for Determination of Adhesion Strength of Cold Spray Splats, Surf. Coat. Technol., 2010, 205(5), pp.1409-1414.

DOI: 10.1016/j.surfcoat.2010.07.037

Google Scholar

[8] J. Vlcek, H. Huber, H. Voggenreiter, and E. Lugscheider,'Melting Upon Particle Impact in the Cold Spray Process,',presented at Materials Week 2002, International Congress on Advanced Materials, (Munich,Germany), Deutsche Gesellschaff fur Materialkunde (DGM), Sept (2002).

Google Scholar

[9] S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, K. Ogawa, Influence of particle velocity on adhesion of coldsprayed splats, J. Therm. Spray Technol. 18 (2009) 331e342, https://doi.org/10.1007/s11666-009-9327-0.

DOI: 10.1007/s11666-009-9327-0

Google Scholar

[10] M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), pp.681-688.

DOI: 10.1016/j.matdes.2004.03.008

Google Scholar

[11] H. Assadi, F. Ga¨ rtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), pp.4379-4394.

DOI: 10.1016/s1359-6454(03)00274-x

Google Scholar

[12] M. Saleh, V. Luzin, K. Spencer, Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods, Surf. Coating. Technol. 252 (2014) 15e28, https://doi.org/10.1016/j.surfcoat.2014.04.059.

DOI: 10.1016/j.surfcoat.2014.04.059

Google Scholar

[13] L. Zhu, T.-C. Jen, Y.-T. Pan, H.-S. Chen, Particle bonding mechanism in cold gas dynamic spray: a three-dimensional approach, J. Therm. Spray Technol. 26 (2017) 1859e1873, https://doi.org/10.1007/s11666-017-0652-4.

DOI: 10.1007/s11666-017-0652-4

Google Scholar

[14] W. Xie, A. Alizadeh-Dehkharghani, Q. Chen, V.K. Champagne, X. Wang, A.T. Nardi, S. Kooi, S. Müftü, J.-H. Lee, Dynamics and extreme plasticity of metallic microparticles in supersonic collisions, Sci. Rep. 7 (2017), https://doi.org/10.1038/s41598-017-05104-7.

DOI: 10.1038/s41598-017-05104-7

Google Scholar

[15] F. Meng, S. Yue, J. Song, Quantitative prediction of critical velocity and deposition efficiency in cold-spray: a finite-element study, Scripta Mater.(2015), https://doi.org/10.1016/j.scriptamat. 2015.05.026.

DOI: 10.1016/j.scriptamat.2015.05.026

Google Scholar

[16] P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, C. Lee, An experimental and finite element study of cold spray copper impact onto two aluminum substrates, J. Therm. Spray Technol. 19 (2009) 620-634, https://doi.org/10.1007/s11666-009-9454-7.

DOI: 10.1007/s11666-009-9454-7

Google Scholar

[17] M. Hassani-Gangaraj, D. Veysset, V. Champagne, K. Nelson, C. Schuh, Adiabatic shear instability is not necessary for adhesion in cold spray, Acta Materialia 158 (2018) 430-439.

DOI: 10.1016/j.actamat.2018.07.065

Google Scholar

[18] K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1-2), pp.234-242.

DOI: 10.1007/s11666-010-9557-1

Google Scholar

[19] H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), pp.1161-76.

DOI: 10.1007/s11666-011-9662-9

Google Scholar