High Energy Surface Implantation by Ion Nitrogen of Ultra- Fine Grained Ti-6Al-4V Alloy for Engineering Application

Article Preview

Abstract:

This paper aims to study the peculiarities of a modified layer in the surface of ultrafine-grained (UFG) Ti-6Al-4V alloy after high energy ion nitrogen implantation. The UFG structure in the alloy was produced by equal channel angular pressing. X-ray diffraction analysis and scratch-testing were applied for the investigation. The influence of low-temperature annealing (400°C during 1 hour) on the substructure parameters and phase composition of the surface layer depending on a number of cycles of ion implantation with annealing was shown in the research. The effect of the UFG structure on mechanisms and strengthening degree of the surface after ion implantation is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1305-1311

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, A. P. Zhilyaev, T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, Hoboken, New York, (2014).

Google Scholar

[2] I.P. Semenova, V.V. Polyakova, G.S. Dyakonov, A.V. Polyakov, Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications, Adv. Eng. Mat. (2019) 1900651.

DOI: 10.1002/adem.201900651

Google Scholar

[3] V. Zherebtsov, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Mater. Sci. Eng. A 536 (2012) 190-196.

DOI: 10.1016/j.msea.2011.12.102

Google Scholar

[4] V.A. Belous, G.I. Nosov, I.O. Klimenko, Strengthening of titanium alloys by ion-plasma, Probl. of Atom. Sci. and Tech. (VANT) 5 (2017) 73-82.

Google Scholar

[5] G. Carter, I.V. Katardjiev, M.I. Nobes, High-fluence ion irradiation, an overview, in: R. Kelly, M. Fernanda da Silva (Eds.), Materials modification by high-fluence ion beams, Kluwer, Dordrecht, 1989, pp.3-27.

DOI: 10.1007/978-94-009-1267-0_1

Google Scholar

[6] M. I. Guseva, Yu. V. Martynenko, A. M. Smyslov, In Proc. 3-rd Inter Workshop on Plasma-Based Ion Implantation, Rossendorf, Germany (1996) pp.101-106.

Google Scholar

[7] P. Budzynski, A.A. Youssef, J. Sielanko, Surface modification of Ti-6Al-4V alloy by nitrogen ion implantation, Wear 261 (2006) 1271-1276.

DOI: 10.1016/j.wear.2006.03.008

Google Scholar

[8] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. & Coat. Tech. 200 (2005) 2192– 2207.

DOI: 10.1016/j.surfcoat.2004.07.115

Google Scholar

[9] M. Castagnet, L.M. Yogi, M.M. Silva, Mario Ueda, A.A. Couto, D.A.P. Reis, C. Moura Neto, Microstructural Analysis of Ti-6Al-4V Alloy after Plasma Immersion Ion Implantation, Mat. Sci. For. 727-728 (2012) 50-55.

DOI: 10.4028/www.scientific.net/msf.727-728.50

Google Scholar

[10] D. R. Tamindarov, M. K. Smyslova, N. V. Plotnikov, Yu.M. Modina, I. P. Semenova, Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation, IOP Conf. Series: Mat. Sci. and Eng. 461 (2019) 012079.

DOI: 10.1088/1757-899x/461/1/012079

Google Scholar

[11] I. P. Semenova, M. K. Smyslova, K. S. Selivanov, R. R. Valiev, Yu. M. Modina, Enhanced fatigue properties of Ti-6Al-4V alloy turbine blades via formation of ultra-fine grained structure and ion implantation of surface, IOP Conf. Series: Mat. Sci. and Eng. 194 (2017) 012035.

DOI: 10.1088/1757-899x/194/1/012035

Google Scholar

[12] M. Leoni, T. Confente, P. Scardi, PM2K: a flexible program implementing Whole Powder Pattern Modelling, Z. Kristallogr. Suppl. 23 (2006) 249-254.

DOI: 10.1524/zksu.2006.suppl_23.249

Google Scholar

[13] P. Scardi, M. Ortolani, M. Leoni, WPPM: microstructural analysis beyond the Rietveld method, Mater. Sci. Forum 651 (2010) 155-171.

DOI: 10.4028/www.scientific.net/msf.651.155

Google Scholar

[14] M. Yasaka, X-ray thin-film measuruments techniques, The Rigaku Journal 26 (2010) 1-9.

Google Scholar

[15] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. of Appl. Cryst. 2 (1969) 65-71.

Google Scholar

[16] E.J. Sonneveld, J.W. Visser, Automatic collection of powder data from photographs, J. Appl. Cryst. 8 (1975) 1-7.

Google Scholar

[17] I.P. Semenova, G.I. Raab, V.V. Polyakova, N.F. Izmailova, S.P. Pavlinich, R.Z. Valiev, Ultrafine-grained Ti-6Al-4V-alloy used for production of complex-shaped articles with enhanced service properties, Rev. on Adv. Mat. Sci. 31 (2012) 179-184.

DOI: 10.1007/s10853-013-7305-x

Google Scholar

[18] Y. Z. Liu, X. T. Zu, S. Y. Qiu, Phase formation and modification of corrosion property of nitrogen implanted Ti-Al-V alloy, Vacuum 81 (2006) 71-76.

DOI: 10.1016/j.vacuum.2006.02.013

Google Scholar

[19] M.I. Guseva, Yu.V. Martynenko, A.M. Smyslov, Deep modification of materials under implantation-plasma treatment. Experiment and theory, In proc. 3-rd Inter Workshop on Plasma-Based Ion Implantation, Rossendorf, Germany (1996) 101-106.

Google Scholar

[20] M. I. Guseva, A. M. Smyslov, Effekt dalnodeystviya pri implantatsii ionov N+, B+ i C+ v titanovyy splav [Long-range effect during implantation of N +, B + and C + ions in a titanium alloy], Surface 6 (2000) 68-71.

Google Scholar

[21] R. Z. Valiev, A. V. Sergueeva, A. K. Mukherjee, The Effect of annealing on tensile deformation behavior of nanostructured SPD Ti, Scr. Mater. 49 (2003) 669-674.

DOI: 10.1016/s1359-6462(03)00395-6

Google Scholar

[22] I.P. Semenova, G.H. Salimgareeva, G. Da Costa, W. Lefebvre, R.Z. Valiev, Enhanced strength and ductility of ultra-fine grained Ti processed by severe plastic deformation, Adv. Eng. Mat. 12 (2010) 803-807.

DOI: 10.1002/adem.201000059

Google Scholar

[23] R.Z. Valiev, I.V. Alexandrov, N.A. Enikeev, M.Yu. Murashkin, I.P. Semenova, Towards enhancement of properties of UFG metals and alloys by grain boundary engineering using SPD processing, Rev. Adv. Mater. Sci. 25 (2010) 1-10.

DOI: 10.1002/adem.201200060

Google Scholar