[1]
R.Z. Valiev, A. P. Zhilyaev, T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, Hoboken, New York, (2014).
Google Scholar
[2]
I.P. Semenova, V.V. Polyakova, G.S. Dyakonov, A.V. Polyakov, Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications, Adv. Eng. Mat. (2019) 1900651.
DOI: 10.1002/adem.201900651
Google Scholar
[3]
V. Zherebtsov, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Mater. Sci. Eng. A 536 (2012) 190-196.
DOI: 10.1016/j.msea.2011.12.102
Google Scholar
[4]
V.A. Belous, G.I. Nosov, I.O. Klimenko, Strengthening of titanium alloys by ion-plasma, Probl. of Atom. Sci. and Tech. (VANT) 5 (2017) 73-82.
Google Scholar
[5]
G. Carter, I.V. Katardjiev, M.I. Nobes, High-fluence ion irradiation, an overview, in: R. Kelly, M. Fernanda da Silva (Eds.), Materials modification by high-fluence ion beams, Kluwer, Dordrecht, 1989, pp.3-27.
DOI: 10.1007/978-94-009-1267-0_1
Google Scholar
[6]
M. I. Guseva, Yu. V. Martynenko, A. M. Smyslov, In Proc. 3-rd Inter Workshop on Plasma-Based Ion Implantation, Rossendorf, Germany (1996) pp.101-106.
Google Scholar
[7]
P. Budzynski, A.A. Youssef, J. Sielanko, Surface modification of Ti-6Al-4V alloy by nitrogen ion implantation, Wear 261 (2006) 1271-1276.
DOI: 10.1016/j.wear.2006.03.008
Google Scholar
[8]
A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. & Coat. Tech. 200 (2005) 2192– 2207.
DOI: 10.1016/j.surfcoat.2004.07.115
Google Scholar
[9]
M. Castagnet, L.M. Yogi, M.M. Silva, Mario Ueda, A.A. Couto, D.A.P. Reis, C. Moura Neto, Microstructural Analysis of Ti-6Al-4V Alloy after Plasma Immersion Ion Implantation, Mat. Sci. For. 727-728 (2012) 50-55.
DOI: 10.4028/www.scientific.net/msf.727-728.50
Google Scholar
[10]
D. R. Tamindarov, M. K. Smyslova, N. V. Plotnikov, Yu.M. Modina, I. P. Semenova, Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation, IOP Conf. Series: Mat. Sci. and Eng. 461 (2019) 012079.
DOI: 10.1088/1757-899x/461/1/012079
Google Scholar
[11]
I. P. Semenova, M. K. Smyslova, K. S. Selivanov, R. R. Valiev, Yu. M. Modina, Enhanced fatigue properties of Ti-6Al-4V alloy turbine blades via formation of ultra-fine grained structure and ion implantation of surface, IOP Conf. Series: Mat. Sci. and Eng. 194 (2017) 012035.
DOI: 10.1088/1757-899x/194/1/012035
Google Scholar
[12]
M. Leoni, T. Confente, P. Scardi, PM2K: a flexible program implementing Whole Powder Pattern Modelling, Z. Kristallogr. Suppl. 23 (2006) 249-254.
DOI: 10.1524/zksu.2006.suppl_23.249
Google Scholar
[13]
P. Scardi, M. Ortolani, M. Leoni, WPPM: microstructural analysis beyond the Rietveld method, Mater. Sci. Forum 651 (2010) 155-171.
DOI: 10.4028/www.scientific.net/msf.651.155
Google Scholar
[14]
M. Yasaka, X-ray thin-film measuruments techniques, The Rigaku Journal 26 (2010) 1-9.
Google Scholar
[15]
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. of Appl. Cryst. 2 (1969) 65-71.
Google Scholar
[16]
E.J. Sonneveld, J.W. Visser, Automatic collection of powder data from photographs, J. Appl. Cryst. 8 (1975) 1-7.
Google Scholar
[17]
I.P. Semenova, G.I. Raab, V.V. Polyakova, N.F. Izmailova, S.P. Pavlinich, R.Z. Valiev, Ultrafine-grained Ti-6Al-4V-alloy used for production of complex-shaped articles with enhanced service properties, Rev. on Adv. Mat. Sci. 31 (2012) 179-184.
DOI: 10.1007/s10853-013-7305-x
Google Scholar
[18]
Y. Z. Liu, X. T. Zu, S. Y. Qiu, Phase formation and modification of corrosion property of nitrogen implanted Ti-Al-V alloy, Vacuum 81 (2006) 71-76.
DOI: 10.1016/j.vacuum.2006.02.013
Google Scholar
[19]
M.I. Guseva, Yu.V. Martynenko, A.M. Smyslov, Deep modification of materials under implantation-plasma treatment. Experiment and theory, In proc. 3-rd Inter Workshop on Plasma-Based Ion Implantation, Rossendorf, Germany (1996) 101-106.
Google Scholar
[20]
M. I. Guseva, A. M. Smyslov, Effekt dalnodeystviya pri implantatsii ionov N+, B+ i C+ v titanovyy splav [Long-range effect during implantation of N +, B + and C + ions in a titanium alloy], Surface 6 (2000) 68-71.
Google Scholar
[21]
R. Z. Valiev, A. V. Sergueeva, A. K. Mukherjee, The Effect of annealing on tensile deformation behavior of nanostructured SPD Ti, Scr. Mater. 49 (2003) 669-674.
DOI: 10.1016/s1359-6462(03)00395-6
Google Scholar
[22]
I.P. Semenova, G.H. Salimgareeva, G. Da Costa, W. Lefebvre, R.Z. Valiev, Enhanced strength and ductility of ultra-fine grained Ti processed by severe plastic deformation, Adv. Eng. Mat. 12 (2010) 803-807.
DOI: 10.1002/adem.201000059
Google Scholar
[23]
R.Z. Valiev, I.V. Alexandrov, N.A. Enikeev, M.Yu. Murashkin, I.P. Semenova, Towards enhancement of properties of UFG metals and alloys by grain boundary engineering using SPD processing, Rev. Adv. Mater. Sci. 25 (2010) 1-10.
DOI: 10.1002/adem.201200060
Google Scholar