[1]
F. D'Elia, C. Ravindran, and D. Sediako, Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy, Mater. Sci. Eng. A, 624 (2014) 169–180.
DOI: 10.1016/j.msea.2014.11.057
Google Scholar
[2]
A. Lombardi, F. D'Elia, C. Ravindran, D. Sediako, B. Murty, and R. MacKay, Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity, Metall. Mater. Trans. A, 43 (2012) 5258–5270.
DOI: 10.1007/s11661-012-1340-0
Google Scholar
[3]
J. Robinson and D. Tanner, The Magnitude of Heat Treatment Induced Residual Stresses and the Thermal Stress Relief of Aluminium Alloys, Mater. Sci. Forum, 404–407 (2009) 355–360.
DOI: 10.4028/www.scientific.net/msf.404-407.355
Google Scholar
[4]
ASTM, E837-13a Standard test method for determining residual stresses by the hole-drilling strain-gage method, ASTM E, (2008).
DOI: 10.1520/e0837-01e01
Google Scholar
[5]
Y. Motoyama, N. Ebihara, H. Shiga, T. Sato, H. Kambe, and M. Yoshida, Thermal Stress Analysis of Residual Stress in a Cylindrical Aluminum Casting with Cast-in GCI Liner, Taking Recovery Behavior Effect into Account, Metall. Mater. Trans. A, 49 (2018) 5619–5635.
DOI: 10.1007/s11661-018-4897-4
Google Scholar
[6]
N. Rossini, M. Dassisti, K. Benyounis, and A. Olabi, Methods of measuring residual stresses in components, Mater. Des., 35 (2012) 572–588.
DOI: 10.1016/j.matdes.2011.08.022
Google Scholar
[7]
J. Stroh and D. Sediako, Residual Strain Characterization of an Advanced Aluminum Marine Alloy Using In-Situ Neutron Diffraction, Light Metals - Applications and Fitness-for-Service Characterization, Materials Science & Technology, (2018) 974-982.
DOI: 10.7449/2018/mst_2018_974_982
Google Scholar
[8]
J. Stroh and D. Sediako, Residual Stress Characterization for Marine Gear Cases in As-Cast and T5 Heat Treated Conditions with Application of Neutron Diffraction, Light Metals, (2019) 395-399.
DOI: 10.1007/978-3-030-05864-7_50
Google Scholar
[9]
D. Sediako, F. D'Elia, A. Lombardi, A. Machin, C. Ravindran, C. Hubbard, and R. Mackay, Application of Neutron Diffraction in Analysis of Residual Stress Profiles in the Cylinder Web Region of an as-Cast V6 Al Engine Block with Cast-In Fe Liners, Suppl. Proc. Mater. Fabr. Prop. Charact. Model., 2 (2011) 299–308.
DOI: 10.1002/9781118062142.ch37
Google Scholar
[10]
S. Ahmad, D. Sediako, A. Lombardi, C. Ravindran, R. Mackay, and A. Nabawy, Assessment of Residual Stress in T5 Treated 319 Aluminum Alloy Engine Blocks Using Neutron Diffraction, SAE Tech. Pap. Ser., 1 (2016).
DOI: 10.4271/2016-01-0353
Google Scholar
[11]
X. Su, J. Lasecki, J. Allison, and J. Jan, Thermal and Residual Stress Analysis of an Engine Block with Cast-In Liners, in 1st proceedings from Materials Solutions Conference 2003, International symposium on metallurgical modeling for aluminum alloys; Metallurgical modeling for aluminum alloys, (2003) 63–68.
Google Scholar
[12]
E. Carrera, A. Rodríguez, J. Talamantes, S. Valtierra, and R. Colás, Measurement of residual stresses in cast aluminium engine blocks, J. Mater. Process. Technol., 189 (2007) 206–210.
DOI: 10.1016/j.jmatprotec.2007.01.023
Google Scholar
[13]
M. Al-Shorman, Nondestructive Residual Strain Measurements Using High Energy X-ray Diffraction, Dissertation for Doctor of Philosophy, Iowa State University (2008).
DOI: 10.31274/etd-180810-2483
Google Scholar
[14]
D. Sediako, J. Stroh, A. Mcdougall, and E. Aghaie, Residual Stress Analysis of A362 Aluminum Alloy Gear Case using Neutron Diffraction, Thermec, (2018).
DOI: 10.4028/www.scientific.net/msf.941.1288
Google Scholar
[15]
A. Lombardi, D. Sediako, C. Ravindran, and R. Mackay, Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule, SAE Int. J. Mater. Manuf., 7 (2014).
DOI: 10.4271/2014-01-0837
Google Scholar
[16]
H. Coules, L. Cozzolino, P. Colegrove, S. Ganguly, S. Wen, and T. Pirling, Residual strain measurement for arc welding and localised high-pressure rolling using resistance strain gauges and neutron diffraction, J. Strain Anal., 47 (2012) 576–586.
DOI: 10.1177/0309324712453408
Google Scholar
[17]
M. Walker, D. Hess, and D. Sediako, Residual Stress Analysis in Semi-Permanent Mold Engine Head Castings, Light Metals, (2014) 355–357.
DOI: 10.1002/9781118888438.ch60
Google Scholar
[18]
P. Hofer, E. Kaschnitz, and P. Schumacher, Distortion and Residual Stress in High-Pressure Die Castings: Simulation and Measurements, JOM, 66 (2014) 1638–1646.
DOI: 10.1007/s11837-014-1118-5
Google Scholar
[19]
Y.-X. Zhang, Y.-P. Yi, S.-Q. Huang, and F. Dong, Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings, Materials Science & Engineering A, 674 (2016) 658-665.
DOI: 10.1016/j.msea.2016.08.017
Google Scholar
[20]
J. Stroh, A. Piche, D. Sediako, A. Lombardi, and G. Byczynski, The effects of solidification cooling rates on the mechanical properties of an aluminum inline-6 engine block, Light Metals Aluminum Alloys, Processing and Characterization - Microstructures and Mechanical Properties of Aluminum Alloys, (2019) 505–512.
DOI: 10.1007/978-3-030-05864-7_65
Google Scholar