[1]
Dirk. Herzog, Vanessa. Seyda, Eric. Wycisk, Claus. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371-392.
DOI: 10.1016/j.actamat.2016.07.019
Google Scholar
[2]
S.H. Huang, P. Liu, A. Mokasdar, L. Huo, Additive manufacturing and its societal impact: a literature review, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203.
DOI: 10.1007/s00170-012-4558-5
Google Scholar
[3]
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: Processing,microstructure, property and developing trend, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI: 10.1016/j.jmst.2018.09.004
Google Scholar
[4]
Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang, Q. Cai, C. Zhang, Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method, Opt. Laser Technol. 111 (2019) 470-480.
DOI: 10.1016/j.optlastec.2018.10.030
Google Scholar
[5]
Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, J. Li, S. Zhang, Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance, J. Mater. Eng. Perform. 26 (2017) 5897-5905.
DOI: 10.1007/s11665-017-3044-5
Google Scholar
[6]
Z. Dong, Y. Liu, W. Li, J. Liang, Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices, J. Alloy Compd. 791 (2019) 490-500.
DOI: 10.1016/j.jallcom.2019.03.344
Google Scholar
[7]
L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Ochsner, Direction and location dependency of selective laser melted AlSi10Mg specimens, J. Mater. Process. Tech. 243 (2017) 48-61.
DOI: 10.1016/j.jmatprotec.2016.11.029
Google Scholar
[8]
F. Del Re, V. Contaldi, A. Astarita, B. Palumbo, A. Squillace, P. Corrado, P. Di Petta, Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing, Int. J. Adv. Manuf. Tech. 97 (2018) 2231-2240.
DOI: 10.1007/s00170-018-2090-y
Google Scholar
[9]
N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment, Mat. Sci. Eng. A 667 (2016) 139-146.
DOI: 10.1016/j.msea.2016.04.092
Google Scholar
[10]
J. Fiocchi, A. Tuissi, P. Bassani, C.A. Biffi, Low temperature annealing dedicated to AlSi10Mg selective laser melting products, J. Alloy Compd. 695 (2017) 3402-3409.
DOI: 10.1016/j.jallcom.2016.12.019
Google Scholar
[11]
L. Girelli, M. Tocci, M. Gelfi, A. Pola, Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy, Mat. Sci. Eng. A 739 (2019) 317-328.
DOI: 10.1016/j.msea.2018.10.026
Google Scholar
[12]
N.E. Uzan, R. Shneck, O. Yeheskel, N. Frage, High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM), Additive Manufacturing 24 (2018) 257-263.
DOI: 10.1016/j.addma.2018.09.033
Google Scholar
[13]
M. Fousovà, D. Dvorsky, A. Machalcovà, D. Vojtech, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures, Mater. Charact. 137 (2018) 119-126.
DOI: 10.1016/j.matchar.2018.01.028
Google Scholar
[14]
S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini, E. Bonetti, Automated resonant vibrating-reed analyzer apparatus for a non-destructive characterization of materials for industrial applications, Mat. Sci. Eng. A 442 (2006) 534-536.
DOI: 10.1016/j.msea.2006.02.210
Google Scholar
[15]
J. Wu, X. Wang, W. Wang, M. Attallah, M. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Mater. 117 (2016) 311-320.
DOI: 10.1016/j.actamat.2016.07.012
Google Scholar
[16]
L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, Y. Sohn, Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment, Mat. Charact. 143 (2018) 5-17.
DOI: 10.1016/j.matchar.2018.04.022
Google Scholar
[17]
U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, M.M. Attallah, Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development, Mat. Des. 105 (2016) 212-222.
DOI: 10.1016/j.matdes.2016.05.066
Google Scholar
[18]
I. Rosenthal, R. Shneck, A. Stern, Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process, Mat. Sci. Eng. A 729 (2018) 310-322.
DOI: 10.1016/j.msea.2018.05.074
Google Scholar
[19]
S. Kahl, H.-E. Ekstrom, J. Mendoza, Tensile, Fatigue, and Creep Properties of Aluminum Heat Exchanger Tube Alloys for Temperatures from 293 K to 573 K (20 °C to 300 °C), Metall. Mater. Trans. A 45 (2013) 663-681.
DOI: 10.1007/s11661-013-2003-5
Google Scholar
[20]
N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N.M. Everitt, On the precipitation hardening of selective laser melted AlSi10Mg, Metall. Mater. Trans. A 46A (2015) 3337-3341.
DOI: 10.1007/s11661-015-2980-7
Google Scholar
[21]
A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg, Mat. Sci. Eng. A 739 (2019) 295-300.
DOI: 10.1016/j.msea.2018.10.055
Google Scholar