[1]
H.W.L. Phillips, Annotated equilibrium diagrams of some aluminium alloy systems. London, Institute of Metals, (1959).
Google Scholar
[2]
L.F. Mondolfo, Aluminium alloys: structure and properties. London: Boston, Butterworths, (1976).
Google Scholar
[3]
R.M.X. Young, T.W. Clyne, An Al-Fe intermetallic phase formed during controlled solidification, Scripta Metall. 15 (1981) 1211-1216.
DOI: 10.1016/0036-9748(81)90301-x
Google Scholar
[4]
S.D. Forder, J.S. Brooks, P.V. Evans, A Mössbauer investigation of phases formed in Al-Fe alloys, Scr. Mater. 35 (1996) 1167-1173.
DOI: 10.1016/1359-6462(96)00273-4
Google Scholar
[5]
J.A. Taylor., Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Mater. Sci. 1 (2012) 19-33.
DOI: 10.1016/j.mspro.2012.06.004
Google Scholar
[6]
C.H. Cáceres, J.A. Taylor, Enhanced ductility in Al-Si-Cu-Mg foundry alloys with high Si content, Metall. Mater. Trans. B 37 (2006) 897-903.
DOI: 10.1007/bf02735011
Google Scholar
[7]
N. Roy, A. M. Samuel, F.H. Samuel, Porosity formation in Al-9 wt pct Si-3 wt pct Cu alloy systems: Metallographic observations, Metall. Mater. Trans. A 27 (1996) 415-429.
DOI: 10.1007/bf02648419
Google Scholar
[8]
R.Z Valiev, R.K Islamgaliev, I.V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[9]
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002) 5-8.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[10]
M. Kawasaki, Z. Horita, T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A 524 (2009) 143-145.
DOI: 10.1016/j.msea.2009.06.032
Google Scholar
[11]
M. Kawasaki, R.B. Figueiredo, T.G. Langdon, An investigation of hardness homogeneity throughout disks processed by high-pressure torsion, Acta. Mater. 59 (2011) 308-316.
DOI: 10.1016/j.actamat.2010.09.034
Google Scholar
[12]
J. Wongsa-Ngam, T.G. Langdon, Microstructural evolution and grain refinement in a Cu-Zr alloy processed by high-pressure torsion, Mater. Sci. Forum 783-786 (2014) 2635-2640.
DOI: 10.4028/www.scientific.net/msf.783-786.2635
Google Scholar
[13]
G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing, Mater. Sci. Eng. A 527 (2010) 4742-4749.
DOI: 10.1016/j.msea.2010.04.041
Google Scholar
[14]
O.N Senkov, F.H. Froes, V.V. Stolyarov, R. Z. Valiev, J. Liu, Microstructure of aluminum-iron alloys subjected to severe plastic deformation, Scr. Mater. 38 (1998) 1511-1516.
DOI: 10.1016/s1359-6462(98)00073-6
Google Scholar
[15]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 51 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[16]
R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 8198-8204.
DOI: 10.1016/j.msea.2011.07.040
Google Scholar
[17]
R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.
DOI: 10.1016/j.actamat.2012.02.027
Google Scholar
[18]
M.I.A.E. Aal, H.S. Kim, Wear properties of high pressure torsion processed ultrafine grained Al-7%Si alloy, Material and Design 23 (2014) 373-382.
DOI: 10.1016/j.matdes.2013.07.045
Google Scholar
[19]
M.I.A.E. Aal, N. E. Mahallawy, F.A. Shehata, M.A.E. Hameed, E.Y. Yoon, H.S. Kim, Wear properties of ECAP-processed ultrafine grained Al-Cu alloys, Mater. Sci. Eng. A 527 (2010) 3726-3732.
DOI: 10.1016/j.msea.2010.03.057
Google Scholar
[20]
M. Chegini, A. Fallahi, M.H. Shaeri, Effect of equal angular pressing (ECAP) on wear behavior of Al-7075 alloy, Procedia Mater. Sci. 11 (2015) 95-100.
DOI: 10.1016/j.mspro.2015.11.116
Google Scholar
[21]
K.Edalati, M. Ashida, Z. Horita, T.Matsui, H.Kato, Wear resistance and tribological features of pure aluminum and Al-Al2O3 composites consolidated by high-pressure torsion, Wear 310 (2014) 83-89.
DOI: 10.1016/j.wear.2013.12.022
Google Scholar
[22]
C. Gode, H. Yilmazer, I. Ozdemir, Y. Todaka, Microstructural refinement and wear property of Al-Si-Cu composite subjected to extrusion and high-pressure torsion, Mater. Sci. Eng. A (2014) 377-384.
DOI: 10.1016/j.msea.2014.09.011
Google Scholar
[23]
J-K. Han, H-J. Lee, J. Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Mater. Sci. Eng. A 684 (2017) 318-327.
DOI: 10.1016/j.msea.2016.12.067
Google Scholar
[24]
T. Kucukomeroglu, Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al-12Si alloy, Materials and Design 31 (2010) 782-789.
DOI: 10.1016/j.matdes.2009.08.004
Google Scholar
[25]
C.T. Wang, N. Gao, R. J. K. Wood, T.G. Langdon, Wear behavior of an aluminum alloy processed by equal-channel angular pressing, J. Mater. Sci. 46 (2011) 123-130.
DOI: 10.1007/s10853-010-4862-0
Google Scholar
[26]
E. Avcu, The influence of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy, Tribology. International 110 (2017) 173-184.
DOI: 10.1016/j.triboint.2017.02.023
Google Scholar