The Influence of HPT on Microstructure and Wear Resistance of Al-7wt%Si-2wt%Fe Alloy

Article Preview

Abstract:

An aluminum silicon-based alloy Al-7wt%Si-2wt%Fe, was processed by severe plastic deformation technique in high-pressure torsion (HPT) at room temperature under a pressure of 6.0 GPa and rotational speed of 1.0 rpm with various numbers of turns up to five. Microstructure evolution, especially iron-containing intermetallic phases, was observed using an optical microscope and a scanning electron microscope (SEM). The microstructure results demonstrate that the large strains introduced by HPT at ambient temperature cause fragmentation of iron-intermetallic particles. The degree of fragmentation increases with increasing numbers of turns so that the intermetallic particles decreased in size with increasing imposed strain. In addition, the wear properties were evaluated using ball-on-disc dry sliding testing for both the as-cast material and the alloy processed by HPT using micro-tribometer UMT-2 (CETR Co., USA) following the ASTM G99-05 (2010) standard. The wear tests were conducted on the surface of the samples at 1.5 mm from the disc center under a normal load of 5 N with a rotational speed of 60 rpm and sliding time of 10 min. The friction coefficient and wear volume loss were examined to evaluate the effect of HPT on wear resistance. The results show that the samples processed by HPT have lower average values for the COF and wear volume loss than that of unprocessed samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1618-1623

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W.L. Phillips, Annotated equilibrium diagrams of some aluminium alloy systems. London, Institute of Metals, (1959).

Google Scholar

[2] L.F. Mondolfo, Aluminium alloys: structure and properties. London: Boston, Butterworths, (1976).

Google Scholar

[3] R.M.X. Young, T.W. Clyne, An Al-Fe intermetallic phase formed during controlled solidification, Scripta Metall. 15 (1981) 1211-1216.

DOI: 10.1016/0036-9748(81)90301-x

Google Scholar

[4] S.D. Forder, J.S. Brooks, P.V. Evans, A Mössbauer investigation of phases formed in Al-Fe alloys, Scr. Mater. 35 (1996) 1167-1173.

DOI: 10.1016/1359-6462(96)00273-4

Google Scholar

[5] J.A. Taylor., Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Mater. Sci. 1 (2012) 19-33.

DOI: 10.1016/j.mspro.2012.06.004

Google Scholar

[6] C.H. Cáceres, J.A. Taylor, Enhanced ductility in Al-Si-Cu-Mg foundry alloys with high Si content, Metall. Mater. Trans. B 37 (2006) 897-903.

DOI: 10.1007/bf02735011

Google Scholar

[7] N. Roy, A. M. Samuel, F.H. Samuel, Porosity formation in Al-9 wt pct Si-3 wt pct Cu alloy systems: Metallographic observations, Metall. Mater. Trans. A 27 (1996) 415-429.

DOI: 10.1007/bf02648419

Google Scholar

[8] R.Z Valiev, R.K Islamgaliev, I.V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[9] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002) 5-8.

DOI: 10.1557/jmr.2002.0002

Google Scholar

[10] M. Kawasaki, Z. Horita, T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A 524 (2009) 143-145.

DOI: 10.1016/j.msea.2009.06.032

Google Scholar

[11] M. Kawasaki, R.B. Figueiredo, T.G. Langdon, An investigation of hardness homogeneity throughout disks processed by high-pressure torsion, Acta. Mater. 59 (2011) 308-316.

DOI: 10.1016/j.actamat.2010.09.034

Google Scholar

[12] J. Wongsa-Ngam, T.G. Langdon, Microstructural evolution and grain refinement in a Cu-Zr alloy processed by high-pressure torsion, Mater. Sci. Forum 783-786 (2014) 2635-2640.

DOI: 10.4028/www.scientific.net/msf.783-786.2635

Google Scholar

[13] G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing, Mater. Sci. Eng. A 527 (2010) 4742-4749.

DOI: 10.1016/j.msea.2010.04.041

Google Scholar

[14] O.N Senkov, F.H. Froes, V.V. Stolyarov, R. Z. Valiev, J. Liu, Microstructure of aluminum-iron alloys subjected to severe plastic deformation, Scr. Mater. 38 (1998) 1511-1516.

DOI: 10.1016/s1359-6462(98)00073-6

Google Scholar

[15] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 51 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[16] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 8198-8204.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[17] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.

DOI: 10.1016/j.actamat.2012.02.027

Google Scholar

[18] M.I.A.E. Aal, H.S. Kim, Wear properties of high pressure torsion processed ultrafine grained Al-7%Si alloy, Material and Design 23 (2014) 373-382.

DOI: 10.1016/j.matdes.2013.07.045

Google Scholar

[19] M.I.A.E. Aal, N. E. Mahallawy, F.A. Shehata, M.A.E. Hameed, E.Y. Yoon, H.S. Kim, Wear properties of ECAP-processed ultrafine grained Al-Cu alloys, Mater. Sci. Eng. A 527 (2010) 3726-3732.

DOI: 10.1016/j.msea.2010.03.057

Google Scholar

[20] M. Chegini, A. Fallahi, M.H. Shaeri, Effect of equal angular pressing (ECAP) on wear behavior of Al-7075 alloy, Procedia Mater. Sci. 11 (2015) 95-100.

DOI: 10.1016/j.mspro.2015.11.116

Google Scholar

[21] K.Edalati, M. Ashida, Z. Horita, T.Matsui, H.Kato, Wear resistance and tribological features of pure aluminum and Al-Al2O3 composites consolidated by high-pressure torsion, Wear 310 (2014) 83-89.

DOI: 10.1016/j.wear.2013.12.022

Google Scholar

[22] C. Gode, H. Yilmazer, I. Ozdemir, Y. Todaka, Microstructural refinement and wear property of Al-Si-Cu composite subjected to extrusion and high-pressure torsion, Mater. Sci. Eng. A (2014) 377-384.

DOI: 10.1016/j.msea.2014.09.011

Google Scholar

[23] J-K. Han, H-J. Lee, J. Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Mater. Sci. Eng. A 684 (2017) 318-327.

DOI: 10.1016/j.msea.2016.12.067

Google Scholar

[24] T. Kucukomeroglu, Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al-12Si alloy, Materials and Design 31 (2010) 782-789.

DOI: 10.1016/j.matdes.2009.08.004

Google Scholar

[25] C.T. Wang, N. Gao, R. J. K. Wood, T.G. Langdon, Wear behavior of an aluminum alloy processed by equal-channel angular pressing, J. Mater. Sci. 46 (2011) 123-130.

DOI: 10.1007/s10853-010-4862-0

Google Scholar

[26] E. Avcu, The influence of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy, Tribology. International 110 (2017) 173-184.

DOI: 10.1016/j.triboint.2017.02.023

Google Scholar