Static Recrystallization in Aluminum/Graphene Composites

Article Preview

Abstract:

The aim of this work was to analyze the recrystallization behavior of cold rolled Aluminum/graphene composites during annealing. The Aluminum/graphene composite was cold rolled firstly, and then annealed at different temperature (250°C, 300°C, 350°C, 400°C) and for various time (1 h, 2 h, 8 h, 32 h). Full recrystallization did not occur until the annealing temperature was above 300 °C. With annealing temperature increasing from 250 to 300°C, the hardness of the composites decreased from 49.6 to 27.6 HV. Grain growth were not observed at high annealing temperature and longer annealing time, which suggested that Graphene has strong pinning effect on the grain boundary of Aluminum.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1636-1641

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Process. technol 142(3) (2003) 738-743.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[2] X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites, Mater. Des 94 (2016) 54-60.

DOI: 10.1016/j.matdes.2016.01.034

Google Scholar

[3] S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng., R 74(10) (2013) 281-350.

DOI: 10.1016/j.mser.2013.08.001

Google Scholar

[4] N. Seyed Pourmand, H. Asgharzadeh, Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties, Critical Reviews in Solid State and Materials Sciences (2019) 1-49.

DOI: 10.1080/10408436.2019.1632792

Google Scholar

[5] Y. Huang, Q. Ouyang, D. Zhang, J. Zhu, R. Li, H. Yu, Carbon Materials Reinforced Aluminum Composites: A Review, Acta Metall Sin (English Letters) 27(5) (2014) 775-786.

DOI: 10.1007/s40195-014-0160-1

Google Scholar

[6] C. Lee, X. Wei, J.W. Kyear, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[7] J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng., A 626 (2015) 400-405.

DOI: 10.1016/j.msea.2014.12.102

Google Scholar

[8] S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene–aluminum nanocomposites, Mater. Sci. Eng., A 528(27) (2011) 7933-7937.

DOI: 10.1016/j.msea.2011.07.043

Google Scholar

[9] S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon 49(2) (2011) 533-544.

DOI: 10.1016/j.carbon.2010.09.054

Google Scholar

[10] M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets, Pro. Nat. Sci 25(5) (2015) 460-470.

DOI: 10.1016/j.pnsc.2015.09.005

Google Scholar

[11] P. Ashwath, M.A. Xavior, The Effect of Ball Milling & Reinforcement Percentage on Sintered Samples of Aluminium Alloy Metal Matrix Composites, Procedia. Eng 97 (2014) 1027-1032.

DOI: 10.1016/j.proeng.2014.12.380

Google Scholar

[12] Z. Yu, W. Yang, C. Zhou, N. Zhang, Z. Chao, H. liu, Y. Cao, Y. Sun, P. Shao, G. Wu, Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method, Carbon 141 (2019) 25-39.

DOI: 10.1016/j.carbon.2018.09.041

Google Scholar

[13] C.Y. Huang, S.P. Hu, K. Chen, Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites, Int. J. Met. Mater 26(6) (2019) 752-759.

DOI: 10.1007/s12613-019-1780-2

Google Scholar

[14] K. Zhan, Y. Wu, J. Li, B. Zhao, Y. Yan, L. Wang, Analysis of recrystallization behavior of shot peened graphene reinforced Al composites during isothermal annealing by X-ray diffraction method, J. Alloys Compd 765 (2018) 862-868.

DOI: 10.1016/j.jallcom.2018.06.269

Google Scholar

[15] S.I. Wright, M.M. Nowell, D.P. Field, A review of strain analysis using electron backscatter diffraction, Microsc. Microanal 17 (2011) 316-329.

DOI: 10.1017/s1431927611000055

Google Scholar

[16] M. Sarkari Khorrami, N. Saito, Y. Miyashita, Texture and strain-induced abnormal grain growth in cryogenic friction stir processing of severely deformed aluminum alloy, Mater. Charact 151 (2019) 378-389.

DOI: 10.1016/j.matchar.2019.03.010

Google Scholar

[17] B. Liao, L. Cao, X. Wu, Y. Zou, G. Huang, P.A. Rometsch, M.J. Couper, Q. Liu, Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055, Materials (Basel) 12(2) (2019).

DOI: 10.3390/ma12020311

Google Scholar

[18] Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.-B. Xiong, Q. Guo, Z. Li, D. Zhang, Interface-induced strain hardening of graphene nanosheet/aluminum composites, Carbon 146 (2019) 17-27.

DOI: 10.1016/j.carbon.2019.01.094

Google Scholar