Operando Monitoring of Charging Processes in Battery Cathodes by Magnetometry and Positron Annihilation

Article Preview

Abstract:

Research in the field of modern battery materials demands characterization techniques which allow an inspection of atomistic processes during battery charging and discharging. Two powerful tools for this purpose are magnetometry and positron-electron annihilation. The magnetic moment serves as highly sensitive fingerprint for the oxidation state of the transition metal ions, thus enabling to identify the electrochemical ”active” ions. The positron lifetime on the other hand, is sensitive to open volume defects of the size of a few missing atoms down to single vacancies providing an unique insight into lattice defects induced by charging and discharging. An overview will be given on operando magnetometry studies of the important class of LiNiCoMn-oxide cathode materials (so-called NMC with Ni:Co:Mn ratios of 1:1:1 and 3:1:1) as well as of sodium vanadium phosphate cathodes. First operando positron annihilation studies on a battery cathode material (NMC 1:1:1) demonstrate the capability of this technique for battery research.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1647-1652

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. P. R. M. L. Harks, F. M. Mulder, P. H. L. Notten, In situ methods for Li-ion battery research: A review of recent developments, J. Power Sources 288 (2015) 92.

DOI: 10.1016/j.jpowsour.2015.04.084

Google Scholar

[2] G. Klinser, S. Topolovec, H. Kren, S. Koller, W. Gössler, H. Krenn, R. Würschum, Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging, Appl. Phys. Letters 109 (2016) 213901.

DOI: 10.1063/1.4968547

Google Scholar

[3] G. Klinser, M. Stückler, H. Kren, S. Koller, W. Goessler, H. Krenn, R. Würschum, Charging processes in the cathode LiNi0.6Mn0.2Co0.2O2 as revealed by operando magnetometry, J. Power Sources 396 (2018) 791.

DOI: 10.1016/j.jpowsour.2018.06.090

Google Scholar

[4] G. Klinser, R. Zettl, M. Wilkening, H. Krenn, I. Hanzu, R. Würschum, Redox processes in sodium vanadium phosphate cathodes-insights from: Operando magnetometry, Phys. Chem. Chem. Phys. 21 (2019) 20151.

DOI: 10.1039/c9cp04045e

Google Scholar

[5] G. Klinser, H. Kren, S. Koller, R. Würschum, Operando monitoring of charging-induced defect formation in battery electrodes by positrons, Appl. Phys. Letters 114 (2019) 013905-1.

DOI: 10.1063/1.5081668

Google Scholar

[6] G. Klinser, Doctoral Thesis, Graz University of Technology (2019).

Google Scholar

[7] S. Topolovec, H. Krenn, R. Würschum, Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer, Rev. Sci. Instrum. 86 (2015) 063903.

DOI: 10.1063/1.4922462

Google Scholar

[8] S. Topolovec, H. Kren, G. Klinser, S. Koller, H. Krenn, R. Würschum. Operando magnetometry on LixCoO2 during charging/discharging, J. Solid State Electrochem. 20 (2016) 1491.

DOI: 10.1007/s10008-015-3110-6

Google Scholar

[9] B. J. Hwang, Y. W. Tsa, D. Carlier, G. Ceder, A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2, Chem. Mater. 15 (2003) 3676.

Google Scholar

[10] K. Shaju, G. S. Rao, B. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta 48 (2002) 145.

DOI: 10.1016/s0013-4686(02)00593-5

Google Scholar

[11] J.-M. Kim, H.-T. Chung, The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V, Electrochim. Acta 49 (2004) 937.

DOI: 10.1016/j.electacta.2003.10.005

Google Scholar

[12] W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 127 (2005) 17479.

DOI: 10.1002/chin.200613019

Google Scholar

[13] F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E. M. Erickson, C. Ghanty, D. T. Major, B. Markovsky, D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2, J. Mater. Chem. A 4 (2016) 16073.

DOI: 10.1039/c6ta06740a

Google Scholar

[14] H. Sun, K. Zhao, Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials, J. Phys. Chem. C 121 (2017) 6002.

Google Scholar