[1]
P. P. R. M. L. Harks, F. M. Mulder, P. H. L. Notten, In situ methods for Li-ion battery research: A review of recent developments, J. Power Sources 288 (2015) 92.
DOI: 10.1016/j.jpowsour.2015.04.084
Google Scholar
[2]
G. Klinser, S. Topolovec, H. Kren, S. Koller, W. Gössler, H. Krenn, R. Würschum, Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging, Appl. Phys. Letters 109 (2016) 213901.
DOI: 10.1063/1.4968547
Google Scholar
[3]
G. Klinser, M. Stückler, H. Kren, S. Koller, W. Goessler, H. Krenn, R. Würschum, Charging processes in the cathode LiNi0.6Mn0.2Co0.2O2 as revealed by operando magnetometry, J. Power Sources 396 (2018) 791.
DOI: 10.1016/j.jpowsour.2018.06.090
Google Scholar
[4]
G. Klinser, R. Zettl, M. Wilkening, H. Krenn, I. Hanzu, R. Würschum, Redox processes in sodium vanadium phosphate cathodes-insights from: Operando magnetometry, Phys. Chem. Chem. Phys. 21 (2019) 20151.
DOI: 10.1039/c9cp04045e
Google Scholar
[5]
G. Klinser, H. Kren, S. Koller, R. Würschum, Operando monitoring of charging-induced defect formation in battery electrodes by positrons, Appl. Phys. Letters 114 (2019) 013905-1.
DOI: 10.1063/1.5081668
Google Scholar
[6]
G. Klinser, Doctoral Thesis, Graz University of Technology (2019).
Google Scholar
[7]
S. Topolovec, H. Krenn, R. Würschum, Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer, Rev. Sci. Instrum. 86 (2015) 063903.
DOI: 10.1063/1.4922462
Google Scholar
[8]
S. Topolovec, H. Kren, G. Klinser, S. Koller, H. Krenn, R. Würschum. Operando magnetometry on LixCoO2 during charging/discharging, J. Solid State Electrochem. 20 (2016) 1491.
DOI: 10.1007/s10008-015-3110-6
Google Scholar
[9]
B. J. Hwang, Y. W. Tsa, D. Carlier, G. Ceder, A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2, Chem. Mater. 15 (2003) 3676.
Google Scholar
[10]
K. Shaju, G. S. Rao, B. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta 48 (2002) 145.
DOI: 10.1016/s0013-4686(02)00593-5
Google Scholar
[11]
J.-M. Kim, H.-T. Chung, The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V, Electrochim. Acta 49 (2004) 937.
DOI: 10.1016/j.electacta.2003.10.005
Google Scholar
[12]
W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 127 (2005) 17479.
DOI: 10.1002/chin.200613019
Google Scholar
[13]
F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E. M. Erickson, C. Ghanty, D. T. Major, B. Markovsky, D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2, J. Mater. Chem. A 4 (2016) 16073.
DOI: 10.1039/c6ta06740a
Google Scholar
[14]
H. Sun, K. Zhao, Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials, J. Phys. Chem. C 121 (2017) 6002.
Google Scholar