[1]
V.M. Il'enko, R.E. Shalin, Titanovye splavy dlja aviacionnyh gazoturbinnyh dvigatelej [Titanium alloys for aircraft gas turbine engines], Titan. 1–2 (1995) 25 (in Russian).
Google Scholar
[2]
R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials. 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[3]
Iu. M. Modina, A.V. Polyakov, G.S. Dyakonov, T.V. Yakovleva, A.G. Raab, I.P. Semenova, Peculiarities of microstructure and mechanical behavior of VT8M-1 alloy processed rotary swaging, IOP Conf. Series: Materials Science and Engineering. 461 (2019) 1-6.
DOI: 10.1088/1757-899x/461/1/012056
Google Scholar
[4]
A.A. Popov, M.O. Leder, M.A. Popova, N.G. Rossina, I.V. Narygina, Effect of alloying on precipitation of intermetallic phases in heat-resistant titanium alloys, The physics of metals and metallography. 116 (2015) 261-266.
DOI: 10.1134/s0031918x15030102
Google Scholar
[5]
A. Popov, M.A. Zhilyakova, O. Elkina, K.I. Lugovaya, The Precipitation of Silicide Particles in Heat-Resistant Titanium Alloys, in: S. Syngellakis, J. J. Connor (Eds.), Advanced Methods and Technologies in Metallurgy in Russia, Springer International Publishing AG, Switzerland, 2018, pp.19-25.
DOI: 10.1007/978-3-319-66354-8_3
Google Scholar
[6]
A.G. Stotskiy, A.V. Polyakov, G.S. Dyakonov, I.P. Semenova, Thermal Stability of Titanium Alloy VT8M-1 with Ultrafine-Grained Structure, Matec Web of Conferences, The 14th World Conf. on Titanium (Nantes).
DOI: 10.1051/matecconf/202032111026
Google Scholar
[7]
R.Z. Valiev, I.V. Alexandrov, N.A. Enikeev, M.Yu. Murashkin, I.P. Semenova, Towards enhancement of properties of ufg metals and alloys by grain boundary engineering using spd processing, Review on Advanced Materials Science. 25 (2010) 1-10.
DOI: 10.4028/www.scientific.net/msf.667-669.665
Google Scholar
[8]
I.P. Semenova, G.H. Salimgareeva, G.Da Costa, W. Lefebvre, R.Z. Valiev, Enhanced strength and ductility of ultra-fine grained Ti processed by severe plastic deformation, Advanced Engeneering Materials. 12 (2010) 803-80.
DOI: 10.1002/adem.201000059
Google Scholar
[9]
W.-J. Zhang, X.-Y. Song, S.-X. Hui, W.-J. Ye, W.-Q. Wang, Phase precipitation behavior and tensile property of a Ti-Al-Sn-Zr-Mo-Nb-W-Si titanium alloy, Rare Metals. 37 (2018) 1064-1069.
DOI: 10.1007/s12598-015-0666-3
Google Scholar
[10]
C. Ramachandra, V. Singh, Silicide phases in some complex titanium alloys, Metallurgical Transactions. A23 (1992) 689–690.
DOI: 10.1007/bf02801186
Google Scholar
[11]
A. A. Popov, M. A. Popova, Isothermal diagrams of precipitation of silicide and aluminide phases in refracctory titanium alloys, Metal Science and Heat Treatment. 58 (2017) 662-666.
DOI: 10.1007/s11041-017-0075-3
Google Scholar
[12]
T. Wanga, B. Lia, Z. Wanga, Z. Niea, A microstructure with improved thermal stability and creep resistance in a novel near-alpha titanium alloy, Materials Science and Engineering A. 731 (2018) 12–20.
DOI: 10.1016/j.msea.2018.06.034
Google Scholar
[13]
A. A. Popov, N. A. Drozdova, Principles of alloying titanium-based two-phase high-temperature alloys, Physics of Metals and Metallography. 84 (1997) 407-412.
Google Scholar