The Impact of Interface Characteristics on Mechanical Performance of a Hot-Forged Cu/Ti-Coated-Diamond Composite

Article Preview

Abstract:

The Cu/55vol.%diamond (Ti) composites were fabricated by hot forging of the cold-pressed powder preforms, consisted of elemental copper powders and Ti-coated diamond particles, at 800 °C (800C-Cu/55Dia composite) and 1050 °C (1050C-Cu55Dia composite), respectively. Well bonded interface was achieved between the diamond and the copper matrix for the 800C-Cu/55Dia composite, and the coverage of diamond by interface was about 96%, attributed to homogeneously distributed nanospherical TiC interface formed on the diamond surface. However, obvious coarse TiC particle size and spallation of the formed interface were observed in the 1050C-Cu55Dia composite, implying that the composite had a relatively low bonding strength. The formed chemical bonding, good wettability and strong mechanical interlocking between the diamond and the copper matrix enable the 800C-Cu/55Dia composite having a high tensile strength of 145 MPa and a strain at fracture of 0.35%, which are about 260% and 170% higher than those of the 1050C-Cu55Dia composite, suggesting that the 800C-Cu/55Dia composite has the potential to have a high thermal conductivity and use as high-performance heat sink materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1682-1689

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Lee, E. Menumerov, R.A. Hughes, S. Neretina, T. Luo, Low-cost nanostructures from nanoparticle-assisted large-scale lithography significantly enhance thermal energy transport across solid interfaces, ACS Appl. Mater. Interfaces. 10 (2018) 34690-34698.

DOI: 10.1021/acsami.8b08180

Google Scholar

[2] R. Anufriev, A. Ramiere, J. Maire, M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures, Nat. Commun. 8 (2017) 15505.

DOI: 10.1038/ncomms15505

Google Scholar

[3] W. Dai, T.F. Ma, Q.W. Yan, et al. Metal-level thermally conductive yet soft graphene thermal interface materials, Acta Mater. 13 (2019) 11561-11571.

DOI: 10.1021/acsnano.9b05163.s003

Google Scholar

[4] G. Chang, F. Sun, J. Duan, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater. 160 (2018) 235-246.

DOI: 10.1016/j.actamat.2018.09.004

Google Scholar

[5] C. Monachon, L. Weber, Thermal boundary conductance between refractory metal carbides and diamond, Acta Mater. 73 (2014) 337-346.

DOI: 10.1016/j.actamat.2014.04.024

Google Scholar

[6] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics, Mater. Today. 17 (2014) 163-174.

Google Scholar

[7] J. Grzonka, M.J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, K. J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99 (2015) 188-194.

DOI: 10.1016/j.matchar.2014.11.032

Google Scholar

[8] G. Bai, L. Wang, Y. Zhang, X. Wang, J. Wang, M.J. Kim, H. Zhang, Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix, Mater. Charact. 152 (2019) 265-275.

DOI: 10.1016/j.matchar.2019.04.015

Google Scholar

[9] F. Yang, Y. Su, S.Q. Jia, Q.Y. Zhao, L. Bolzoni, T. Li, M. Qian, Titanium-doped copper-diamond composites fabricated by hot-forging of powder mixtures or cold-pressed powder preforms, JOM. 71 (2019) 4867-4871.

DOI: 10.1007/s11837-019-03833-w

Google Scholar

[10] H.J. Cho, Y.J. Kim, U. Erb, Thermal conductivity of copper-diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles, Compos. B-Eng. 155 (2018) 197-203.

DOI: 10.1016/j.compositesb.2018.08.014

Google Scholar

[11] R.X. Liu, G.Q. Luo, Y. Li, J. Zhang, Q. Shen, L.M. Zhang, Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating Surf. Coat. Technol. 360 (2019) 376-381.

DOI: 10.1016/j.surfcoat.2018.12.116

Google Scholar

[12] C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol. 277 (2015) 299-307.

DOI: 10.1016/j.surfcoat.2015.07.059

Google Scholar

[13] Z.F. Che, J.W. Li, Q.X. Wang, L.H. Wang, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites, Compos. Part A-Appl. Sci. Manuf. 107 (2018) 164-170.

DOI: 10.1016/j.compositesa.2018.01.002

Google Scholar

[14] K.A. Weidenmann, R. Tavangar, L. Weber, Mechanical Behaviour of Diamond Reinforced Metals, Mater Sci Eng A- Struct. Mater. 523 (2009) 226–234.

DOI: 10.1016/j.msea.2009.05.069

Google Scholar

[15] K.A. Weidenmann, R. Tavangar, L. Weber, Rigidity of Diamond Reinforced Metals Featuring High Particle Contents, Compos. Sci. Technol. 69 (2009) 1660–1666.

DOI: 10.1016/j.compscitech.2009.03.016

Google Scholar

[16] C. Zhao and J.Wang, Enhanced Mechanical Properties in Diamond/Cu Composites with Chromium Carbide Coating for Structural Applications, Mater. Sci. Eng. A –Struct. Mater. 588 (2013) 221–227.

DOI: 10.1016/j.msea.2013.09.034

Google Scholar

[17] H. Zhang, Y. Qi, J. Li, J. Wang, X. Wang, Effect of Zr content on mechanical properties of diamond/Cu-Zr composites produced by gas pressure infiltration, J. Mater. Eng. Perform. 27 (2018) 714-720.

DOI: 10.1007/s11665-017-3097-5

Google Scholar

[18] F. Yang, W. Sun, A. Singh, L. Bolzoni, Effect of minor titanium addition on copper/diamond composites prepared by hot forging, JOM. 70 (2018) 2243-2248.

DOI: 10.1007/s11837-018-2815-2

Google Scholar

[19] X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, Effect of Interface Structure on the Mechanical Properties of Graphene Nanosheets Reinforced Copper Matrix Composites, ACS Appl. Mater. Interfaces. 10 (2018) 37586-37601.

DOI: 10.1021/acsami.8b09799

Google Scholar

[20] Y. Zhao, Z. Qian, X. Ma, H. Chen, T. Gao, Y. Wu, X. Liu, Unveiling the semicoherent interface with definite orientation relationships between reinforcements and matrix in novel Al3BC/Al composites, ACS Appl. Mater. Interfaces. 8 (2016) 28194-28201.

DOI: 10.1021/acsami.6b08913

Google Scholar

[21] E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, Thermal conductivity of diamond composites sintered under high pressures, Diam. Relat. Mater. 17 (2008) 838-843.

DOI: 10.1016/j.diamond.2007.12.051

Google Scholar

[22] Y. Fan, H. Guo, J. Xu, K. Chu, X. Zhu, C. Jia, Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration, Int. J. Miner. Metall. Mater. 18 (2011) 472.

DOI: 10.1007/s12613-011-0465-2

Google Scholar

[23] K. Mizuuchi, K. Inoue, Y. Agari, M. Sugioka, M. Tanaka, T. Takeuchi, M. Kawahara, Y. Makino, M. Ito, Processing of diamond-particle-dispersed silver-matrix composites in solid–liquid co-existent state by SPS and their thermal conductivity, Compos. B-Eng. 43 (2012) 1445-1452.

DOI: 10.1016/j.compositesb.2011.08.003

Google Scholar

[24] M.E. Stournara, X. Xiao, Y. Qi, et al. Li segregation induces structure and strength changes at the amorphous Si/Cu interface, Nano lett. 13 (2013) 4759-4768.

DOI: 10.1021/nl402353k

Google Scholar

[25] H. Fang, Y. Zhao, Y. Zhang, et al. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties, ACS Appl. Mater. Interfaces. 9 (2017) 26447-26459.

DOI: 10.1021/acsami.7b07650

Google Scholar