Effect of Chemical Composition on Grain Refinement of AlxCoCrFeNi High Entropy Alloys with NiAl Grain Boundary Precipitates

Article Preview

Abstract:

In AlxCoCrFeNi high entropy alloys (x = 0.3–0.5), the NiAl phase with the B2 structure is precipitated rapidly along the fcc grain boundaries. During recrystallization after conventional cold rolling, the NiAl precipitates effectively suppress the grain growth, which results in the ultrafine-grained microstructure. It should be noted that no severe plastic deformation is necessary to obtain the microstructure. The volume fraction of the NiAl precipitates increases with increasing x. As a result, the average grain size of the fcc matrix (dm) after the recrystallization decreases with increasing x, and therefore, a minimum dm of 0.5 μm can be obtained at x = 0.5. The grain refinement by the NiAl precipitates is consistent with the Zener-Smith model. At x = 0.5, the alloy with dm = 0.5 μm exhibits a yield stress of 1163 MPa and an elongation of 24% at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1690-1695

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.

Google Scholar

[2] B. S. Murty, J-W. Yeh, S. Ranganathan, High-Entropy Alloys, Elsevier, Amsterdam, (2014).

Google Scholar

[3] M. C. Gao, J-W. Yeh, P. K. Liaw, Y. Zhang (eds.), High-Entropy Alloys: Fundamentals and Applications, Springer, Cham, (2016).

Google Scholar

[4] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.

Google Scholar

[5] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler and E.P. George, Acta Mater. 112 (2016) 40-52.

DOI: 10.1016/j.actamat.2016.04.005

Google Scholar

[6] Y-F. Kao, T-J. Chen, S-K. Chen and J-W. Yeh, J. Alloys Compd. 488 (2009) 57-64.

Google Scholar

[7] H. Y. Yasuda, K. Shigeno and T. Nagase, Scripta Mater. 108 (2015) 80-83.

Google Scholar

[8] H. Y. Yasuda, H. Miyamoto, K. Cho and T. Nagase, Mater. Lett. 199 (2017) 120-123.

Google Scholar

[9] C. Zener, quoted by C. S. Smith, Trans. Met. Soc. AIME 175 (1948) 15-51.

Google Scholar

[10] T. Nishizawa, I. Ohnuma and K. Ishida, Mater. Trans. JIM 38 (1997) 950-956.

Google Scholar

[11] K. Cho, Y. Fujioka, T. Nagase and H. Y. Yasuda, Mater. Sci. Eng. A. 735 (2018) 191-200.

Google Scholar

[12] H. Y. Yasuda, T. Sakata and Y. Umakoshi, Acta Mater. 47 (1999) 1923-1933.

Google Scholar

[13] M. Ueda, H.Y. Yasuda and Y. Umakoshi, Acta Mater. 49 (2001) 3421-3432.

Google Scholar

[14] M. Ueda, H.Y. Yasuda and Y. Umakoshi, Acta Mater. 49 (2001) 4251-4258.

Google Scholar

[15] M. Ueda, H.Y. Yasuda and Y. Umakoshi, Acta Mater. 51 (2003) 1007-1017.

Google Scholar

[16] Z. Sun, G. Song, T.A. Sisneros, B. Clausen, C. Pu, L. Li, Y. Gao and P.K. Liaw, Sci. Rep. 6 (2016) 1-9.

Google Scholar