[1]
E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[2]
N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.
Google Scholar
[3]
N. Balasubramanian, T.G. Langdon, The strength-grain size relationship in ultrafine-grained metals, Metall. Mater. Trans. A 47A (2016) 5827-5838.
DOI: 10.1007/s11661-016-3499-2
Google Scholar
[4]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.
DOI: 10.1007/s11837-006-0213-7
Google Scholar
[5]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[6]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[7]
A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, T.G. Langdon, Orientation imaging microscopy of ultrafine-grained nickel, Scripta Mater. 46 (2002) 575-580.
DOI: 10.1016/s1359-6462(02)00018-0
Google Scholar
[8]
A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater. 51 (2003) 753-765.
DOI: 10.1016/s1359-6454(02)00466-4
Google Scholar
[9]
J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, J. Mater. Sci. 48 (2013) 4653-4660.
DOI: 10.1007/s10853-012-7072-0
Google Scholar
[10]
R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.
DOI: 10.1016/j.actamat.2012.02.027
Google Scholar
[11]
S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion, J. Mater. Sci. 47 (2012) 7789-7795.
DOI: 10.1007/s10853-012-6524-x
Google Scholar
[12]
M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.
DOI: 10.1007/s10853-013-7687-9
Google Scholar
[13]
C. Xu, Z. Horita, T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater. 55 (2007) 203-212.
DOI: 10.1016/j.actamat.2006.07.029
Google Scholar
[14]
C.T. Wang, Y. He, T.G. Langdon, The significance of strain weakening and self-annealing in a superplastic Bi-Sn eutectic alloy processed by high–pressure torsion, Acta Mater. 185 (2020) 245-256.
DOI: 10.1016/j.actamat.2019.11.064
Google Scholar
[15]
T.G. Langdon, Strengthening and weakening in the processing of ultrafine-grained metals, Kovove Mater. 53 (2015) 213-219.
DOI: 10.4149/km_2015_4_213
Google Scholar
[16]
J.-K. Han, T. Herndon, J.-i. Jang, T.G. Langdon, M. Kawasaki, Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through High‐Pressure Torsion, Adv. Eng. Mater. (2019) 1901289.
DOI: 10.1002/adem.201901289
Google Scholar
[17]
B. Ahn, H.-J. Lee, I.-C. Choi, M. Kawasaki, J.-i. Jang, T.G. Langdon, Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion, Adv. Eng. Mater. 18 (2016) 1001-1008.
DOI: 10.1002/adem.201500520
Google Scholar
[18]
J.-K. Han, K.-D. Liss, T.G. Langdon, M. Kawasaki, Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg, Sci. Rep. 9 (2019) 17186.
DOI: 10.1038/s41598-019-53614-3
Google Scholar
[19]
M.M. Castro, P.H.R. Pereira, A. Isaac, R.B. Figueiredo, T.G. Langdon, Development of a magnesium-alumina composite through cold consolidation of machining chips by high-pressure torsion. J. Alloys Compd. 780 (2019) 422-427.
DOI: 10.1016/j.jallcom.2018.11.357
Google Scholar
[20]
M.M. Castro, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Inverse Hall-Petch behaviour in an AZ91 alloy and in an AZ91-Al2O3 composite consolidated by high-pressure torsion. Adv. Eng. Mater. (In Press).
DOI: 10.1002/adem.201900894
Google Scholar
[21]
M.M. Castro, W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo, Consolidation of magnesium and magnesium-quasicrystal composite through high-pressure torsion. Lett. Mater. 9 (2019) 546-550.
DOI: 10.22226/2410-3535-2019-4-546-550
Google Scholar
[22]
M.M. Castro, D.R. Lopes, R.B. Soares, D.M.M. Santos, E.H.M. Nunes, V.F. Lins, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Magnesium-based bioactive composites processed at room temperature. Mater. 12 (2019) 2609.
DOI: 10.3390/ma12162609
Google Scholar
[23]
B. Li, W.H. Zhong, Review on polymer/graphite nanoplatelet nanocomposites, J. Mater. Sci. 46 (2011) 5595-5614.
DOI: 10.1007/s10853-011-5572-y
Google Scholar
[24]
Y. Huang, P. Bazarnik, D. Wan, D. Luo, P.H.R. Pereira, M. Lewandowska, J. Yao, B.E. Hayden, T.G. Langdon, The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion, Acta Mater. 164 (2019) 499-511.
DOI: 10.1016/j.actamat.2018.10.060
Google Scholar