Recent Developments in the Processing of Advanced Materials Using Severe Plastic Deformation

Article Preview

Abstract:

The processing of bulk metals through the application of severe plastic deformation (SPD), using procedures such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), is now well established for the fabrication of materials with exceptionally small grain sizes, usually in the submicrometer range and often having grain sizes at the nanometer level. These grain sizes cannot be achieved using thermo-mechanical processing or any conventional processing techniques. Recently, these procedures have been further developed to process alternative advanced materials. For example, by stacking separate disks within the HPT facility for the synthesis of bulk nanocrystalline metastable alloys where it is possible to achieve exceptionally high hardness, or by pressing powders or metallic particles in order to obtain new and novel nanocomposites exhibiting unusual properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

3-8

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[2] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.

Google Scholar

[3] N. Balasubramanian, T.G. Langdon, The strength-grain size relationship in ultrafine-grained metals, Metall. Mater. Trans. A 47A (2016) 5827-5838.

DOI: 10.1007/s11661-016-3499-2

Google Scholar

[4] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[5] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[6] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[7] A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, T.G. Langdon, Orientation imaging microscopy of ultrafine-grained nickel, Scripta Mater. 46 (2002) 575-580.

DOI: 10.1016/s1359-6462(02)00018-0

Google Scholar

[8] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater. 51 (2003) 753-765.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[9] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, J. Mater. Sci. 48 (2013) 4653-4660.

DOI: 10.1007/s10853-012-7072-0

Google Scholar

[10] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion, Acta Mater. 60 (2012) 3190-3198.

DOI: 10.1016/j.actamat.2012.02.027

Google Scholar

[11] S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion, J. Mater. Sci. 47 (2012) 7789-7795.

DOI: 10.1007/s10853-012-6524-x

Google Scholar

[12] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[13] C. Xu, Z. Horita, T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater. 55 (2007) 203-212.

DOI: 10.1016/j.actamat.2006.07.029

Google Scholar

[14] C.T. Wang, Y. He, T.G. Langdon, The significance of strain weakening and self-annealing in a superplastic Bi-Sn eutectic alloy processed by high–pressure torsion, Acta Mater. 185 (2020) 245-256.

DOI: 10.1016/j.actamat.2019.11.064

Google Scholar

[15] T.G. Langdon, Strengthening and weakening in the processing of ultrafine-grained metals, Kovove Mater. 53 (2015) 213-219.

DOI: 10.4149/km_2015_4_213

Google Scholar

[16] J.-K. Han, T. Herndon, J.-i. Jang, T.G. Langdon, M. Kawasaki, Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through High‐Pressure Torsion, Adv. Eng. Mater. (2019) 1901289.

DOI: 10.1002/adem.201901289

Google Scholar

[17] B. Ahn, H.-J. Lee, I.-C. Choi, M. Kawasaki, J.-i. Jang, T.G. Langdon, Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion, Adv. Eng. Mater. 18 (2016) 1001-1008.

DOI: 10.1002/adem.201500520

Google Scholar

[18] J.-K. Han, K.-D. Liss, T.G. Langdon, M. Kawasaki, Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg, Sci. Rep. 9 (2019) 17186.

DOI: 10.1038/s41598-019-53614-3

Google Scholar

[19] M.M. Castro, P.H.R. Pereira, A. Isaac, R.B. Figueiredo, T.G. Langdon, Development of a magnesium-alumina composite through cold consolidation of machining chips by high-pressure torsion. J. Alloys Compd. 780 (2019) 422-427.

DOI: 10.1016/j.jallcom.2018.11.357

Google Scholar

[20] M.M. Castro, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Inverse Hall-Petch behaviour in an AZ91 alloy and in an AZ91-Al2O3 composite consolidated by high-pressure torsion. Adv. Eng. Mater. (In Press).

DOI: 10.1002/adem.201900894

Google Scholar

[21] M.M. Castro, W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo, Consolidation of magnesium and magnesium-quasicrystal composite through high-pressure torsion. Lett. Mater. 9 (2019) 546-550.

DOI: 10.22226/2410-3535-2019-4-546-550

Google Scholar

[22] M.M. Castro, D.R. Lopes, R.B. Soares, D.M.M. Santos, E.H.M. Nunes, V.F. Lins, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Magnesium-based bioactive composites processed at room temperature. Mater. 12 (2019) 2609.

DOI: 10.3390/ma12162609

Google Scholar

[23] B. Li, W.H. Zhong, Review on polymer/graphite nanoplatelet nanocomposites, J. Mater. Sci. 46 (2011) 5595-5614.

DOI: 10.1007/s10853-011-5572-y

Google Scholar

[24] Y. Huang, P. Bazarnik, D. Wan, D. Luo, P.H.R. Pereira, M. Lewandowska, J. Yao, B.E. Hayden, T.G. Langdon, The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion, Acta Mater. 164 (2019) 499-511.

DOI: 10.1016/j.actamat.2018.10.060

Google Scholar