Model Description of the Unusual Temperature Dependence of the Viscosity of Metallic Glass-Forming Liquids

Article Preview

Abstract:

The temperature dependence of the viscosity of some metallic glass forming liquids (MGFLs) exhibits an unusual behavior. At high temperature, the temperature dependence is quite weak, whereas at low temperature, the viscosity varies exponentially. Recently, this type of behavior are attracting much attention, because it can be considered as a manifestation of the fragile-to-strong transition. Well known classic viscosity models do not describe such kind of behavior over a wide temperature range. In the present report, it is shown that a modified version of the Bond Strength-Coordination Number Fluctuation (BSCNF) model describes the behavior observed in MGFLs. For the convenience of the readers, a brief review of the BSCNF model is also given.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

30-35

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zheng, J.C. Mauro: J. Amer. Ceram. Soc. 100 (2017) 6.

Google Scholar

[2] P. Koštál, J. Shánělová, J. Málek: Intern. Mater. Rev. 65 (2020) 63.

Google Scholar

[3] J. Schroers: Adv. Mater. 22 (2010) 1566.

Google Scholar

[4] M. Aniya: J. Therm. Anal. Cal. 69 (2002) 971.

Google Scholar

[5] M. Ikeda, M. Aniya: Materials 3 (2010) 5246.

Google Scholar

[6] M. Ikeda, M.Aniya: J. Non-Cryst. Solids 371-372 (2013) 53.

Google Scholar

[7] M. Aniya, M. Ikeda: Ionics 16 (2010) 7.

Google Scholar

[8] A.G.M. Ferreira, A.P.V. Egas, I.M.A. Fonseca, A.C. Costa, D.C. Abreu, L.Q. Lobo: J. Chem. Therm. 113 (2017) 162.

Google Scholar

[9] Y. Okada, M. Ikeda, M. Aniya: Solid State Ionics 281 (2015) 43.

Google Scholar

[10] M. Ikeda, M. Aniya: J. Alloys Comp. 805 (2019) 904.

Google Scholar

[11] A. Saiter, N. Delpouve, E. Dargent, J.M. Saiter: Eur. Polym. J. 43 (2007) 4675.

Google Scholar

[12] O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa, Y. Yokoyama: Acta Mater. 58 (2010) 1829.

DOI: 10.1016/j.actamat.2009.11.025

Google Scholar

[13] M. Ikeda, M. Aniya: Eur. Polym. J. 86 (2017) 29.

Google Scholar

[14] M. Aniya, M. Ikeda: Mater. Sci. Forum 783-786 (2014) 1889.

Google Scholar

[15] N.V. Surovtsev: Chem. Phys. Lett. 477 (2009) 57.

Google Scholar

[16] V.N. Novikov: Chem. Phys. Lett. 659 (2016) 133.

Google Scholar

[17] A. Jaiswal, T. Egami, K.F. Kelton, K.S. Schweizer, Y. Zhang: Phys. Rev. Lett. 117 (2016) 205701.

Google Scholar

[18] M. Aniya, M. Ikeda: Mater. Sci. Forum 941 (2018) 2331.

Google Scholar

[19] M.E. Blodgett, T. Egami, Z. Nussinov, K.F. Kelton: Sci. Rep. 5 (2015) 13837.

Google Scholar

[20] K.H. Tsang, S.K. Lee, H.W. Kui: J. Appl. Phys. 70 (1991) 4837.

Google Scholar

[21] Y. Kawamura, A. Inoue: Appl. Phys. Lett. 77 (2000) 1114.

Google Scholar

[22] M. Yang, X.J. Liu, Y. Wu, H. Wang, X.Z. Wang, Z.P. Lu: Mater. Res. Lett. 6 (2018) 495.

Google Scholar

[23] C. Zhou, L. Hu, Q. Sun, H. Zheng, C. Zhang, Y. Yue: J. Chem. Phys. 142 (2015) 064508.

Google Scholar

[24] J. Orava, D.W. Hewak, A.L. Greer: Adv. Funct. Mater. 25 (2015) 4851.

Google Scholar

[25] M.D. Demetriou, J.S. Harmon, M. Tao, G. Duan, K. Samwer, W.L. Johnson: Phys. Rev. Lett. 97 (2006) 065502.

DOI: 10.1103/physrevlett.97.089901

Google Scholar