[1]
W. Araki and J. Malzbender. Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3-d under uniaxial compressive loading, J. Eur. Ceram. Soc. 33 (2013) 805-812.
DOI: 10.1016/j.jeurceramsoc.2012.10.035
Google Scholar
[2]
W. Araki, T. Abe, and Y. Arai. Anomalous variation of the mechanical behaviour of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3-d during the ferro-to-paramagnetic transition, Scripta Mater. 99 (2015) 9-12.
DOI: 10.1016/j.scriptamat.2014.11.014
Google Scholar
[3]
B.X. Huang, R.W. Steinbrech, S. Baumann, and J. Malzbender, Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3-d, Acta Mater. 60 (2012) 2479-2484.
DOI: 10.1016/j.actamat.2011.12.025
Google Scholar
[4]
B.X. Huang, A. Chanda, R. W. Steinbrech and J. Malzbender, Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-d and Ba0.5Sr0.5Co0.8Fe0.2O3-d, J. Mater. Sci. 47 (2012) 2695-2699.
DOI: 10.1007/s10853-011-6095-2
Google Scholar
[5]
M.N. Islam, W. Araki, and Y. Arai. Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3-d with various porosities and pore sizes, J. Mater. Sci. 54 (2018) 5256-5265.
DOI: 10.1007/s10853-018-03268-9
Google Scholar
[6]
M.N. Islam, W. Araki, and Y. Arai. Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3-d prepared with different pore formers, Ceram. Int. 43 (2017) 14989-14995.
DOI: 10.1016/j.ceramint.2017.08.020
Google Scholar
[7]
Y. Zou, W. Araki, M. Balaguer, J. Malzbender. Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3-d, J. Eur. Ceram. Soc. 36 (2016) 1651-1657.
DOI: 10.1016/j.jeurceramsoc.2016.01.034
Google Scholar
[8]
P. E. Vullum, R. Holmestad, H. L. Lein, J. Mastin, M. A. Einarsrud, and T. Grande. Monoclinic ferroelastic domains in LaCoO3-based perovskites, Adv. Mater. 19 (2007) 4399-4403.
DOI: 10.1002/adma.200700021
Google Scholar
[9]
W. Araki, J. Malzbender. Electrical conductivity of La0.58Sr0.4Co0.2Fe0.8O3-d during ferroelastic deformation under uniaxial compressive loading, Solid State Ionics 233 (2013) 67-72.
DOI: 10.1016/j.ssi.2012.12.010
Google Scholar
[10]
W. Araki, Q. Miaolong, and Y. Arai. Oxygen non-stoichiometry of La0.6Sr0.4Co0.2Fe0.8O3-d under uniaxial compression evaluated by coulometric titration, Electrochim. Acta 253 (2017) 339-343.
DOI: 10.1016/j.electacta.2017.09.073
Google Scholar
[11]
W. Araki, T. Yamaguchi, Y. Arai, and J. Malzbender. Strontium surface segregation in La0.58Sr0.4Co0.2Fe0.8O3-d annealed under compression, Solid State Ionics 268 (2014) 1-6.
DOI: 10.1016/j.ssi.2014.09.019
Google Scholar
[12]
W. Araki, M. Miyashita, and Y. Arai. Strontium surface segregation in La0.6Sr0.4Co0.2Fe0.8O3-d subjected to mechanical stress, Solid State Ionics 290 (2016) 18-23.
DOI: 10.1016/j.ssi.2016.04.003
Google Scholar
[13]
Y. Kimura, T. Kushi, S. Hashimoto, K. Amezawa, and T. Kawada. Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co0.2Fe0.8O3-d, J. Am. Ceram. Soc. 95 (2012) 2608-2613.
DOI: 10.1111/j.1551-2916.2012.05265.x
Google Scholar
[14]
H.C. Cao and A.G. Evans, Non-linear deformation of ferroelectric ceramics, Final report to ONR Agency Award Number N00014-91-J-4024 Sensor and actuator materials for high performance composites (1992).
Google Scholar
[15]
Y. Nakazato, W. Araki, and Y. Arai. Effect of oxygen efficiency on ferroelastic behaviour of LSCF, Proceedings of JSME Kanto Branch Conference 19C16 (2019).
DOI: 10.1299/jsmekanto.2019.25.19c16
Google Scholar
[16]
K. Riess, P.T. Geiger, N.H. Khansur, S. Steiner, T. Frömling, M. Hinterstein, and K.G. Webber. Influence of the annealing conditions on temperature-dependent ferroelastic behavior of LSCF, Mater. 6 (2019) 100297.
DOI: 10.1016/j.mtla.2019.100297
Google Scholar