Mechanical Stress Issues of La0.6Sr0.4Co0.2Fe0.8O3-δ

Article Preview

Abstract:

Ionic devices consisted of ion-conductive ceramics such as solid oxide fuel cells (SOFC) and oxygen separation membranes have been developed in the last decades. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), which is a mixed ionic-electronic conductive ceramics, is especially expected to play an important role in those ionic devices and so its electrochemical properties have been intensively studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

36-41

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Araki and J. Malzbender. Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3-d under uniaxial compressive loading, J. Eur. Ceram. Soc. 33 (2013) 805-812.

DOI: 10.1016/j.jeurceramsoc.2012.10.035

Google Scholar

[2] W. Araki, T. Abe, and Y. Arai. Anomalous variation of the mechanical behaviour of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3-d during the ferro-to-paramagnetic transition, Scripta Mater. 99 (2015) 9-12.

DOI: 10.1016/j.scriptamat.2014.11.014

Google Scholar

[3] B.X. Huang, R.W. Steinbrech, S. Baumann, and J. Malzbender, Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3-d, Acta Mater. 60 (2012) 2479-2484.

DOI: 10.1016/j.actamat.2011.12.025

Google Scholar

[4] B.X. Huang, A. Chanda, R. W. Steinbrech and J. Malzbender, Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-d and Ba0.5Sr0.5Co0.8Fe0.2O3-d, J. Mater. Sci. 47 (2012) 2695-2699.

DOI: 10.1007/s10853-011-6095-2

Google Scholar

[5] M.N. Islam, W. Araki, and Y. Arai. Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3-d with various porosities and pore sizes, J. Mater. Sci. 54 (2018) 5256-5265.

DOI: 10.1007/s10853-018-03268-9

Google Scholar

[6] M.N. Islam, W. Araki, and Y. Arai. Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3-d prepared with different pore formers, Ceram. Int. 43 (2017) 14989-14995.

DOI: 10.1016/j.ceramint.2017.08.020

Google Scholar

[7] Y. Zou, W. Araki, M. Balaguer, J. Malzbender. Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3-d, J. Eur. Ceram. Soc. 36 (2016) 1651-1657.

DOI: 10.1016/j.jeurceramsoc.2016.01.034

Google Scholar

[8] P. E. Vullum, R. Holmestad, H. L. Lein, J. Mastin, M. A. Einarsrud, and T. Grande. Monoclinic ferroelastic domains in LaCoO3-based perovskites, Adv. Mater. 19 (2007) 4399-4403.

DOI: 10.1002/adma.200700021

Google Scholar

[9] W. Araki, J. Malzbender. Electrical conductivity of La0.58Sr0.4Co0.2Fe0.8O3-d during ferroelastic deformation under uniaxial compressive loading, Solid State Ionics 233 (2013) 67-72.

DOI: 10.1016/j.ssi.2012.12.010

Google Scholar

[10] W. Araki, Q. Miaolong, and Y. Arai. Oxygen non-stoichiometry of La0.6Sr0.4Co0.2Fe0.8O3-d under uniaxial compression evaluated by coulometric titration, Electrochim. Acta 253 (2017) 339-343.

DOI: 10.1016/j.electacta.2017.09.073

Google Scholar

[11] W. Araki, T. Yamaguchi, Y. Arai, and J. Malzbender. Strontium surface segregation in La0.58Sr0.4Co0.2Fe0.8O3-d annealed under compression, Solid State Ionics 268 (2014) 1-6.

DOI: 10.1016/j.ssi.2014.09.019

Google Scholar

[12] W. Araki, M. Miyashita, and Y. Arai. Strontium surface segregation in La0.6Sr0.4Co0.2Fe0.8O3-d subjected to mechanical stress, Solid State Ionics 290 (2016) 18-23.

DOI: 10.1016/j.ssi.2016.04.003

Google Scholar

[13] Y. Kimura, T. Kushi, S. Hashimoto, K. Amezawa, and T. Kawada. Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co0.2Fe0.8O3-d, J. Am. Ceram. Soc. 95 (2012) 2608-2613.

DOI: 10.1111/j.1551-2916.2012.05265.x

Google Scholar

[14] H.C. Cao and A.G. Evans, Non-linear deformation of ferroelectric ceramics, Final report to ONR Agency Award Number N00014-91-J-4024 Sensor and actuator materials for high performance composites (1992).

Google Scholar

[15] Y. Nakazato, W. Araki, and Y. Arai. Effect of oxygen efficiency on ferroelastic behaviour of LSCF, Proceedings of JSME Kanto Branch Conference 19C16 (2019).

DOI: 10.1299/jsmekanto.2019.25.19c16

Google Scholar

[16] K. Riess, P.T. Geiger, N.H. Khansur, S. Steiner, T. Frömling, M. Hinterstein, and K.G. Webber. Influence of the annealing conditions on temperature-dependent ferroelastic behavior of LSCF, Mater. 6 (2019) 100297.

DOI: 10.1016/j.mtla.2019.100297

Google Scholar