[1]
Pariente, I. F., F. J. Belzunce, and CR Y. J. Riba. Mechanical strength and fracture toughness of high chromium white cast irons. Materials Science and Technology 24.8 (2008): 981-985.
DOI: 10.1179/174328407x213161
Google Scholar
[2]
Coronado, J. J., and A. Sinatora. Abrasive wear study of white cast iron with different solidification rates." Wear 267.11 (2009): 2116-2121.
DOI: 10.1016/j.wear.2009.08.010
Google Scholar
[3]
Albertin, E., and A. Sinatora. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear 250.1-12 (2001): 492-501.
DOI: 10.1016/s0043-1648(01)00664-0
Google Scholar
[4]
Çetinkaya, Cemil. An investigation of the wear behaviour of white cast irons under different compositions. Materials & design 27.6 (2006): 437-445.
DOI: 10.1016/j.matdes.2004.11.021
Google Scholar
[5]
Scandian, C., et al. Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear. Wear 267.1-4 (2009): 401-408.
DOI: 10.1016/j.wear.2008.12.095
Google Scholar
[6]
Goddard, J., and H. Wilman. A theory of friction and wear during the abrasion of metals. Wear 5.2 (1962): 114-135.
DOI: 10.1016/0043-1648(62)90235-1
Google Scholar
[7]
Hokkirigawa, K., and K. Kato. An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear. Tribology international 21.1 (1988): 51-57.
DOI: 10.1016/0301-679x(88)90128-4
Google Scholar
[8]
Murray, M. J., P. J. Mutton, and J. D. Watson. Abrasive wear mechanisms in steels. Journal of Lubrication Technology 104.1 (1982): 9-16.
DOI: 10.1115/1.3253171
Google Scholar
[9]
Kayaba, T., K. Hokkirigawa, and K. Kato. Analysis of the abrasive wear mechanism by successive observations of wear processes in a scanning electron microscope. Wear 110.3-4 (1986): 419-430.
DOI: 10.1016/0043-1648(86)90115-8
Google Scholar
[10]
Hokkirigawa, K., K. Kato, and Z. Z. Li. The effect of hardness on the transition of the abrasive wear mechanism of steels. Wear 123.2 (1988): 241-251.
DOI: 10.1016/0043-1648(88)90102-0
Google Scholar
[11]
Tabrett, Christopher P., I. R. Sare, and M. R. Ghomashchi. Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews 41.2 (1996): 59-82.
DOI: 10.1179/imr.1996.41.2.59
Google Scholar
[12]
Doğan, Ö. N., J. A. Hawk, and George Laird. Solidification structure and abrasion resistance of high chromium white irons. Metallurgical and Materials Transactions A 28.6 (1997): 1315-1328.
DOI: 10.1007/s11661-997-0267-3
Google Scholar
[13]
Wiengmoon, A. Carbides in high chromium cast irons. Naresuan University Engineering Journal 6.1 (2011): 64-71.
Google Scholar
[14]
[15] Pearce, J. T. H. The use of transmission electron microscopy to study the effects of abrasive wear on the matrix structure of a high chromium cast iron. Wear 89.3 (1983): 333-344.
DOI: 10.1016/0043-1648(83)90154-0
Google Scholar
[15]
ZumGahr, Karl-Heinz, and Douglas V. Doane. Optimizing fracture toughness and abrasion resistance in white cast irons. Metallurgical Transactions A 11.4 (1980): 613-620.
DOI: 10.1007/bf02670698
Google Scholar
[16]
Ratia, Vilma. Behavior of Martensitic Wear Resistant Steels in Abrasion and Impact Wear Testing Conditions. USA, Temepre University of Technology 2 (2015).
Google Scholar
[17]
Ojeda, Matías. Optimization of a wear testing machine to study materials used in minig.. Thesis Universidad de Santiago de Chile,(2015).
Google Scholar